亚马逊AWS官方博客
Category: Artificial Intelligence
无代码机器学习:AutoGluon、Amazon SageMaker 与 AWS Lambda 合力加持 AutoML
在本文中,我们介绍了如何在无需编写任何代码的前提下,实现ML模型的训练与推理预测。AutoGluon、Amazon SageMaker以及AWS Lambda的密切配合最终让这一看似不可能的任务成为现实。大家可以使用本文中的示例无代码管道实现ML功能,整个过程轻松便捷,不需要任何编程或数据科学方面的专业知识。
使用 Amazon Textract 与 Amazon Augmented AI 配合人工循环处理 PDF 文档
在本文中,我们展示了如何使用Amazon Textract与Amazon A2I从多页PDF文档扫描文件中自动提取数据,以及如何根据给定的业务条件对页面进行人工审核。关于Amazon Textract与Amazon A2I的更多详细信息,请参阅将Amazon Augmented AI与Amazon Textract配合使用。
使用 TensorBoard 实现 TensorFlow 训练作业可视化
在本文中,展示了使用TensorBoard可视化TensorFlow训练作业,以Amazon S3作为日志存储。您可以使用这套解决方案以及对应的示例notebook,通过Amazon SageMaker构建和训练模型,并运行超参数调优作业。此外,您可以使用TensorBoard对不同训练作业中的超参数进行比较,生成并显示分类器混淆矩阵,剖析并可视化训练作业的性能。
使用 Amazon SageMaker Processing 与 AWS Step Functions 构建机器学习工作流
机器学习(ML)工作流负责编排并自动执行机器学习任务序列,包括数据收集,机器学习模型的训练、测试与评估,外加模型部署。AWS Step Functions能够在端到端工作流中编排并自动执行与 Amazon SageMaker相关的各项机器学习任务。AWS Step Functions数据科学软件开发工具包( AWS Step Functions Data Science Software Development Kit,简称SDK)是一套开源库,使您得以轻松创建包含数据预处理、模型训练和部署的工作流。您可以使用Python创建机器学习工作流,而无需分别设置及整合各项AWS服务。
使用 A/B 测试衡量 Amazon Personalize 推荐结果的有效性
A/B测试还能够提供客户与Amazon Personalize推荐结果间实际交互方式的宝贵信息。这些结果将根据明确定义的业务指标进行衡量,使您了解推荐结果的有效性,以及该如何进一步调整训练数据集建立起明确认知。在对此过程进行多轮迭代之后,您会发现各项重要指标都将得到改善,客户参与度也将随之提高。
自建 Kubernetes 集群提交和管理 Amazon SageMaker 训练任务(二)SageMaker Operator 安装及任务提交
在使用SageMaker Operator提交任务的时候,往往会涉及到使用的算法和数据来自本地,本文介绍了如何利用SageMaker Operator的参数定义,能够让线上的SageMaker训练任务使用到本地的代码及数据。
大多数 Alexa 现在在更快、更经济高效的 Amazon EC2 Inf1 实例上运行
今天,我们宣布,Amazon Alexa 团队已将绝大多数基于 GPU 的机器学习推理工作负载迁移到由 AWS Inferentia 提供支持的 Amazon Elastic Compute Cloud (EC2) Inf1 实例。这样一来,执行 Alexa 的文本到语音转换工作负载时,与基于 GPU 的实例相比,端到端延迟降低了 25%,成本降低了 30%。较低的延迟使 Alexa 工程师能够利用更复杂的算法进行创新,并改善客户的整体 Alexa 体验。
在 Amazon SageMaker Autopilot 推理管道中部署您的自有数据处理代码
在本文中,我们演示了如何使用您自己的数据处理代码构建起自定义Autopilot推理管道。我们首先训练出特征选择模型,而后使用经过训练的特征选择模型对原始数据进行转换。接下来,我们启动Amazon SageMaker Autopilot作业,针对我们的回归问题自动训练并优化出最佳机器学习模型。我们还构建起一套将特征选择与Autopilot模型加以结合的推理管道。
加快创新步伐:F1 如何运用 AWS 上的无服务器机器学习提升洞见能力
2020年,F1方程式赛车迎来了自己的70岁生日,同时也是世界上将运动技能与工程技术实力全面结合的极少数顶尖运动之一。技术一直在F1中扮演着核心角色,规则与工具的演变也早已融入F1运动的血液当中。正是这种不断进取、不断探索的精神,令全球赛车迷们痴狂不已,关注自己热爱的车手与车队如何以十分之一秒为单位超越对手、夺取胜利。
在 AWS 上构建云原生机器学习流水线
近两年,机器学习已经渗透到各行各业,各种人工智能和机器学习的应用蓬勃发展,在其背后实际上会有一个完善的机器学习平台和流水线来支撑模型的开发、测试和迭代。但是这样一个系统性的平台,往往需要通过整合基础架构层和平台层来完成。在本篇Blog中,我们将展现如果通过AWS的服务构建云原生的机器学习流水线。