亚马逊AWS官方博客

Tag: Amazon Kinesis

IoT 数据摄入和可视化的 7 种模式 – 如何确定最适合您使用场景的模式

无论您是刚刚开始物联网(IoT)之旅,还是已经拥有数百万台互联的 IoT 设备,您可能都在寻求方法以最大限度地利用从 IoT 数据中提取的价值。IoT 设备数据所报告的遥测数据、元数据、状态以及命令和响应中包含了丰富的信息。但是,要想获得尽可能提升运营效率和交付业务成果所需的洞察,拥有正确的报告和可视化解决方案是关键所在。

Read More

使用 AWS Glue、Apache Hudi 和 Amazon S3 构建无服务器管道以分析串流数据

企业通常会积累海量数据,并继续生成越来越多的数据量,从 TB 级到 PB 级,有时甚至会生成 EB 级的数据。此类数据通常在不同的系统中生成,需要聚合到一个位置进行分析和生成洞察。借助数据湖架构,您可以聚合各个孤岛中的数据,将其存储在一个集中式存储库中,实施数据治理,并支持基于这些存储的数据进行分析和机器学习(ML)。

Read More

使用 Amazon MSK Connect、Apache Flink 和 Apache Hudi 创建低延迟的源到数据湖管道

近年来,我们已经从整体式架构向微服务架构转变。微服务架构使应用程序更易于扩展和更快开发,从而实现创新并加快新功能的上市。但是,这种方法会导致数据存在于不同的孤岛中,这使得执行分析变得困难。为了获得更深入和更丰富的洞察,您应该将不同孤岛中的所有数据集中到一个地方。

Read More

在规划 Amazon ElastiCache Redis 集群大小时,需要考量的五种工作负载特性

Amazon Kinesis流式数据处理服务凭借强大的实时处理功能、无需预置或管理任何基础设施、按实际用量付费这些特点,可以帮助企业快速构建流式数据处理、分析平台,获得对企业业务运营的洞察,并帮助企业实时响应业务和客户的需求,加速企业的数字化转型。

Read More

使用 Apache Flink 和 Amazon Kinesis Data Analytics for Java 应用程序构建和运行流应用程序

流处理有助于实时数据的收集、处理和分析,并能够持续生成见解和快速响应新出现的情况。当派生见解的值随时间减少时,此功能非常有用。因此,您对检测到的情况反应越快,反应就越有价值。例如,考虑一个可以在欺诈性信用卡交易发生时对其进行分析和阻止的流应用程序。将该应用程序与传统的面向批处理的方法相比较,该方法在每个工作日结束时识别欺诈性交易,并生成一份供您在次日早上读取的全面报告。

Read More