亚马逊AWS官方博客

Tag: kubernetes

在 Kubernetes 中为应用程序部署 Amazon RDS 数据库

Kubernetes 容器编排系统为管理分布式环境中的应用程序提供了大量资源。其中许多应用程序都需要一个安全、持久和高性能的可搜索存储系统来存储其数据。开发人员希望专注于不断改进其应用程序,而不必担心其数据库的运行功能。他们还需要一种直接从 Kubernetes 连接和管理数据库的方法。

Read More

在 Kubernetes 上优化 Spark 性能

要保证Spark工作负载的良好运行,我们必须在计算、网络与存储资源的I/O中做出权衡与优化。客户永远希望以最佳性能与最低成本的前提下运行此类工作负载。为了满足需求,Kubernetes提供多种调整选项,而本文涵盖了其中几项值得关注的优化技巧。希望大家能够由此得到启发,灵活运用最佳实践以改善Spark性能。如果大家还有更多意见或者建议,也请在eks-spark-benchmark GitHub repo上创建问题留下您的反馈。

Read More

立足 AWS 对 Kubernetes 进行成本优化

通过自动扩缩集群中节点及Pod,正确调整分配给Pod中容器的资源的大小,缩减业务时段以外的部署规模,并将大部分Pod转移至竞价实例,能够为Kubernetes集群节省超过80%的EC2实例成本。这四种重要的方式,均来自AWS良好架构构架中成本优化支柱原则所提到的最佳实践。事实也再次证明,这些建议确实能够帮助客户以更节省和更高效地方式在EKS中运行Kubernetes工作负载。

Read More

使用 Amazon SageMaker Operator 简化 Kubernetes 上的机器学习推理

创建一个可靠、高效的机器学习推理服务需要做很多的投入。拿一个基于 XGBoost 模型的服务来说,开发人员需要创建一个完善的应用程序,例如通过 Flask 来加载模型,然后运行终端节点。创建这个应用程序,开发人员需要考虑队列管理、无故障部署以及重新加载新训练的模型等等事宜。应用开发好后被打包成容器镜像,然后推送到镜像仓库。Kubernetes 从镜像仓库拉取该镜像在集群上进行部署,部署好后才可以对外提供服务。这些步骤需要您的数据科学家从事与提高模型准确性无关的任务,或引进devops工程师来做这些工作。这些过程加到开发计划中,必然会需要更多的时间进行服务迭代。

Read More