Listing Thumbnail

    MongoDB Atlas for Government

     Info
    Deployed on AWS
    Vendor Insights
    MongoDB Atlas for Government is a separate environment of MongoDB Atlas, dedicated to meeting the demanding security and privacy needs of the US Government. Easily deploy, operate, and scale MongoDB on AWS by letting Atlas take care of time-consuming administration tasks.

    Overview

    MongoDB Atlas for Government has achieved FedRAMP Moderate Authorization and is a separate environment of MongoDB Atlas, dedicated to meeting the demanding security and privacy needs of the US Government.

    It is a fully managed MongoDB service engineered and run by the same team that builds the database and MongoDB Atlas. It incorporates operational best practices we've learned from optimizing thousands of deployments across startups and the Fortune 100. Build on MongoDB Atlas for Government with confidence, knowing that you no longer need to worry about database management, setup, and configuration, software patching, monitoring, backups, or operating a reliable, distributed database cluster.

    MongoDB Atlas for Government is available in AWS GovCloud and AWS US FedRAMP Moderate regions.MongoDB Atlas for Government for AWS Marketplace includes: 24,000 MongoDB Atlas for Government Credits valid for 12 months for USD 24,000. Credits are consumed based on the chosen cluster configuration, backup settings, and network transfer costs

    MongoDB Atlas for Government Pro Support with 2 hr response time SLA. The MongoDB Atlas for Government Pro plan provides access to proactive, consultative support. The same team that builds the database helps you throughout your entire application lifecycle. You can ask MongoDB experts unlimited questions, 24 x 365, globally.

    Highlights

    • Highly available: Clusters are geo-distributed fault-tolerant and self-healing. Deploy across multiple regions (e.g.: spanning GovCloud east and west regions) for even better guarantees and local reads.
    • Protect your data: Strong security defaults with authentication, network isolation, encryption, and role-based access controls keep your data protected.
    • Build semantic search and AI-powered applications: Integrate the operational database and vector search in a single, unified, and fully managed developer data platform with a MongoDB native interface that leverages large language models (LLMs) through popular frameworks

    Details

    Delivery method

    Deployed on AWS

    Features and programs

    Vendor Insights

     Info
    Skip the manual risk assessment. Get verified and regularly updated security info on this product with Vendor Insights.
    Security credentials achieved
    (3)

    Financing for AWS Marketplace purchases

    AWS Marketplace now accepts line of credit payments through the PNC Vendor Finance program. This program is available to select AWS customers in the US, excluding NV, NC, ND, TN, & VT.
    Financing for AWS Marketplace purchases

    Pricing

    Custom pricing options

    Pricing is based on your specific requirements and eligibility. Request a private offer to receive a custom quote. Sign in to view any offers that have been extended to you.

    How can we make this page better?

    We'd like to hear your feedback and ideas on how to improve this page.
    We'd like to hear your feedback and ideas on how to improve this page.

    Legal

    Content disclaimer

    Vendors are responsible for their product descriptions and other product content. AWS does not warrant that vendors' product descriptions or other product content are accurate, complete, reliable, current, or error-free.

    Usage information

     Info

    Delivery details

    Software as a Service (SaaS)

    SaaS delivers cloud-based software applications directly to customers over the internet. You can access these applications through a subscription model. You will pay recurring monthly usage fees through your AWS bill, while AWS handles deployment and infrastructure management, ensuring scalability, reliability, and seamless integration with other AWS services.

    Resources

    Support

    AWS infrastructure support

    AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

    Product comparison

     Info
    Updated weekly

    Accolades

     Info
    Top
    50
    In Data Warehouses
    Top
    10
    In Data Analysis, Databases & Analytics Platforms, Databases
    Top
    10
    In Analytic Platforms, Databases & Analytics Platforms, Databases

    Customer reviews

     Info
    Sentiment is AI generated from actual customer reviews
    Reviews
    Functionality
    Ease of use
    Customer service
    Cost effectiveness
    4 reviews
    Insufficient data
    Insufficient data
    Positive reviews
    Mixed reviews
    Negative reviews

    Overview

     Info
    AI generated from product descriptions
    Database Clustering
    Geo-distributed fault-tolerant clusters with self-healing capabilities and multi-region deployment options
    Security Framework
    Strong authentication mechanisms with network isolation, encryption, and role-based access controls
    Compliance Certification
    FedRAMP Moderate Authorization for US Government security and privacy requirements
    Vector Search Capability
    Native integration of operational database with vector search functionality leveraging large language models through popular frameworks
    Deployment Environment
    Specialized service available in AWS GovCloud and AWS US FedRAMP Moderate regions with fully managed database infrastructure
    Database Architecture
    Multi-purpose database supporting key-value, JSON documents, SQL query, vectors, and full-text search capabilities
    Scalability Model
    Dynamic scaling with ability to scale out, in, up, and down across individual database services
    Data Synchronization
    Fully managed data synchronization for mobile and IoT use cases with edge device support
    Security Framework
    Advanced role-based access control (RBAC) with encryption for data in transit and at rest
    Analytics Processing
    Native JSON-based analytics with zero ETL transformation and real-time processing architecture
    Distributed Database Architecture
    Fully managed, distributed SQL database supporting transactional and analytical workloads in a single engine
    Vector Search Capabilities
    Integrated vector search functionality with indexed search for AI applications and generative AI use cases
    High-Performance Data Ingestion
    Ability to ingest millions of events per second using parallel, distributed lock-free pipelines
    Concurrent Query Processing
    Supports scaling access to tens or hundreds of thousands of concurrent users with super-low latency queries
    Cloud-Native Infrastructure
    Built on a modern, lock-free cloud-native architecture enabling elastic scalability and high-performance data processing

    Security credentials

     Info
    Validated by AWS Marketplace
    FedRAMP
    GDPR
    HIPAA
    ISO/IEC 27001
    PCI DSS
    SOC 2 Type 2
    -
    -
    -
    -
    No security profile

    Contract

     Info
    Standard contract
    No
    No
    No

    Customer reviews

    Ratings and reviews

     Info
    4
    4 ratings
    5 star
    4 star
    3 star
    2 star
    1 star
    0%
    75%
    25%
    0%
    0%
    4 AWS reviews
    |
    377 external reviews
    Star ratings include only reviews from verified AWS customers. External reviews can also include a star rating, but star ratings from external reviews are not averaged in with the AWS customer star ratings.
    Cameron-Bashaw

    Open-source tool improves network monitoring and reporting efficiency

    Reviewed on Jun 25, 2025
    Review provided by PeerSpot

    What is our primary use case?

    MongoDB  does well in being able to access our network devices and keep logs and reporting—that's about it.

    I would recommend MongoDB  as part of a template if anyone is considering free and open-source templating services such as LibreNMS , but as a standalone, I couldn't advise.

    What is most valuable?

    MongoDB has definitely helped us improve our network monitoring and reporting dashboard, so I would say it has impacted our operations positively overall.

    What needs improvement?

    I'm not sure about the documentation or the knowledge bases available for MongoDB because I don't interact with it at that level, but I would say it's minimal and could be improved.

    I am not experienced with MongoDB enough to know any pain points or areas they could improve.

    Nothing else comes to mind at this time that could be improved.

    For how long have I used the solution?

    We deployed MongoDB about five years ago and it has been in operation since then.

    What was my experience with deployment of the solution?

    I was not a part of the initial setup or deployment of MongoDB.

    One person was involved with the setup team, and it took just a few days to deploy it.

    What do I think about the scalability of the solution?

    Overall, on a scale of one to ten, I would rate MongoDB an eight; it's mostly because we're still running a monolithic environment on old hardware, so there are some limitations with read-write access.

    Which solution did I use previously and why did I switch?

    At this time, I'm only looking into Cisco or Linux or other solutions out of curiosity about possibly switching to it, but currently all that we use are LibreNMS  and Splynx.

    How was the initial setup?

    From what I know, I would say the initial setup of MongoDB was pretty straightforward.

    On LibreNMS, they have a template for setting up the environment that includes all the services, so MongoDB is just part of that template, meaning they weren't really too hands-on with setting up MongoDB itself.

    What about the implementation team?

    One person was involved with the setup team, and their job title was Network Operations Engineer.

    Which other solutions did I evaluate?

    I'm familiar with open-source databases such as MongoDB, and I don't think it's Grafana , but it's similar to Grafana , though I'm trying to think of what it's called.

    I'm not entirely sure about the main differences between MongoDB and other open-source databases that I've used.

    We haven't really delved too much into looking at comparisons for databases.

    What other advice do I have?

    MongoDB is not currently supporting our AI-driven projects nor do we use it along with AI at all.

    I don't know how MongoDB's document-oriented model has benefited our management processes; that's beyond my expertise.

    I don't have experience with QRadar or Auvik or similar products.

    I'm familiar with some Linux tools, just things such as smokeping, which we use implemented in our LibreNMS environment.

    I'm only an operator, so I don't actually spend a lot of time developing MongoDB, thus I'm not sure what the best features are.

    I would rate MongoDB an eight out of ten.

    Which deployment model are you using for this solution?

    On-premises
    Fabien GOUINEAU

    Offers reliable engine for legacy needs but requires enhanced cost management and AI features

    Reviewed on Jun 23, 2025
    Review provided by PeerSpot

    What is our primary use case?

    I am not a partner of MongoDB; I am just a customer.

    I do not use MongoDB in AI projects; only CosmoDB is used for AI projects, as MongoDB is an old pattern for us, and the new workload in AI is for a new pattern, which is CosmoDB for AI apps.

    I would recommend MongoDB because it is a good pattern and a good product for legacy; for us, MongoDB is for legacy databases and legacy apps, and in this scope, it is a good pattern and a stable database engine; however, for new deployments and new applications, CosmoDB is a better engine.

    What is most valuable?

    My experience as a partner with Microsoft is very good because we have been a partner for three or four years, and it has been a very good experience.

    MongoDB may have advantages over Cosmos DB perhaps in metrics because you can make some dashboards with database metrics, and there are many tools in MongoDB for dashboarding that are perhaps better than CosmoDB.

    The dashboards in MongoDB have more functionalities; for example, you can create a dashboard with MongoDB database data, and it is simple to create, such as some sales dashboards, while I do not see this functionality to rapidly create such dashboards in CosmoDB.

    What needs improvement?

    While MongoDB is a good product, it is also an expensive product for support, and its scalability is acceptable, but the big problem with MongoDB is the cost.

    For security in MongoDB, we work with encrypted databases by default, but we have not contracted the security options in our contract because it is too expensive, so we only implement encrypted databases without the security pack, which is very expensive for us; in security, we are at the first steps, just using encrypted databases.

    I think additional features needed in MongoDB include perhaps vector databases, as I think they are not supported right now.

    For how long have I used the solution?

    I have been working with MongoDB for five years.

    What do I think about the scalability of the solution?

    The scalability in MongoDB is limited because we only work with ReplicaSet with two servers, and in comparison, the scalability in CosmoDB is much better than the MongoDB ReplicaSet models; although you can set the auto-provisioning of a node in ReplicaSet, it is very expensive, and we have to work with manual scalability in MongoDB.

    The performance of MongoDB is good, especially in a ReplicaSet model, but if you want to pass on to another model, for example, Sharding models, it is very complicated; in ReplicaSet, it is acceptable, but if your workload needs more performance, and you must pass to a Sharding model, it is complicated in MongoDB, whereas in CosmoDB, it is simple.

    What was our ROI?

    We have seen a little ROI, and we want to target CosmoDB for this return on investment because it is the better model for this feature; however, with MongoDB, it is difficult to calculate the return on investment, as it is too expensive for our use.

    What's my experience with pricing, setup cost, and licensing?

    We pay approximately 2,000 euros per month for MongoDB.

    What other advice do I have?

    This solution receives a rating of 7 out of 10.

    mangu d.

    Friendly to use of collections

    Reviewed on May 22, 2025
    Review provided by G2
    What do you like best about the product?
    The mongodb GUI is very good to view the collection and manage to the databases
    What do you dislike about the product?
    The GUI of we cannot see the user details
    What problems is the product solving and how is that benefiting you?
    Easy to edit collections
    Uzair Faruqi

    Transforms data flow with adaptable schema and smooth public cloud deployment

    Reviewed on Mar 11, 2025
    Review provided by PeerSpot

    What is our primary use case?

    One of our business units uses MongoDB , and we developed an ETL pipeline that extracts data from MongoDB  and transfers it into our data warehouse.

    What is most valuable?

    MongoDB is a NoSQL database that is similar to a document database. It offers flexibility in schema adaptation, allowing us to change the schema and add new data points. Additionally, it scales up easily with low memory requirements. This makes it suitable for our data management needs.

    What needs improvement?

    There is room for improvement in integrating MongoDB with agentive AI solutions. While solutions for other databases like SQL or PostgreSQL  already exist, MongoDB requires additional integrations for developing AI solutions.

    For how long have I used the solution?

    I have about four years of experience working with MongoDB.

    What was my experience with deployment of the solution?

    The deployment process was straightforward.

    What do I think about the stability of the solution?

    MongoDB is highly stable, and I would rate its stability at nine out of ten.

    What do I think about the scalability of the solution?

    MongoDB is highly scalable. I would rate its scalability nine out of ten.

    How are customer service and support?

    We use the open-source version of MongoDB and manage it ourselves, so we have not contacted their technical support.

    How would you rate customer service and support?

    Neutral

    Which solution did I use previously and why did I switch?

    Before using MongoDB, we used IBM DB2 . We switched to MongoDB to develop a composite system that includes both SQL and NoSQL databases.

    How was the initial setup?

    The initial setup of MongoDB was a straightforward process.

    What's my experience with pricing, setup cost, and licensing?

    We use the free version of MongoDB, so there are no licensing costs.

    What other advice do I have?

    Based on my experience, I would recommend MongoDB to others. Its usage depends on specific use cases. MongoDB is suitable for document database needs. I would rate MongoDB as eight or nine out of ten, and I would rate the overall solution the same.

    Which deployment model are you using for this solution?

    Public Cloud

    If public cloud, private cloud, or hybrid cloud, which cloud provider do you use?

    Other
    Joe S.

    Overpriced, Poor performance and some of the worse support I have ever had to deal with

    Reviewed on Dec 16, 2024
    Review provided by G2
    What do you like best about the product?
    I have nothing good to say about MongoDB Atlas.
    What do you dislike about the product?
    My story with Mongo began when I started a new software position, and they had a legacy version of their software product using Atlas.

    Compared to our other infrastructure bills, Mongo was significantly higher for the amount of compute and storage we used ($3K per month). This is a managed service, so you would expect to pay a premium. Ok, sure, but then I expect great functionality, performance, and support.

    The main problem began with Mongo when we needed to delete some data because they tie the CPU and memory tiers to storage size, so we were overpaying. Our application would run fine off an M10 dedicated cluster (the smallest tier), but it had automatically scaled to an M50 because of storage. This is already a bit disappointing because they are forcing customers to pay for more compute and memory than they need.

    So we started deleting some data, but then we ran into problems. The data deletion process was really slow and also slowed our entire cluster down, causing lag and performance issues for our end users. But hang on, this makes no sense because we are paying for more CPU and RAM than we need, so why would we have this issue?

    It took us three months to delete 500GB of data. In the meantime, our bill remained the same because you can't claim the space back without compacting the database. Ok, fine. So we ran compact(), but we only freed ~100GB on the secondary clusters.

    Support gave us a script to run that can see how much storage can be freed.

    In the end, we had to activate an expensive additional support plan costing us $500 USD per month to get support to run a re-sync command. This should have taken their support people 10 minutes, but instead, they mucked us around going back and forth on the ticket, taking three weeks to resolve.

    A year later, we needed to delete some more data. We spent another five months deleting 800GB of data. Then we ran compact() and freed 300GB. Where is our other 500GB? We contacted some humans at Mongo, who really couldn't do much other than suggest we get funding to cover the $500 support for one month. Yes, we got the $500 credit, but when I went to reactivate support, it was going to charge us for three months for one month because Mongo retroactively bills you for three months when you reactivate. Wow, we started in a bad place, now I'm beyond frustrated; this is daylight robbery.

    To this day, I am still fighting to reclaim some storage, but at this point, I'm going to recommend to our CEO that our dev team put some effort into moving away completely from Mongo.

    I also need to mention that Mongo recommended we use their online archive features, but when we crunched the numbers, it was still quite expensive, and we would have to do significant work to make our application work between the regular clusters and online archive. So it was significantly more logical to just put the data in AWS S3, then delete it in Mongo.

    If I can summarize my experience with Mongo, and I acknowledge mine is probably quite different to most, here it is:

    Overpriced for the performance you get

    Sneaky billing model where they tie CPU and memory to storage

    Terrible and expensive support

    Sneaky extra charges on reactivating support

    Bad support escalation solutions - they couldn't just turn on free 'support'

    Poor database performance

    Slow delete operations

    Ecosystem lock-in

    Forced upgrades - no LTS releases

    Let me sum it up this way: if your compact() command does not free up the space that is available on your cluster, then provide the customer with free support to do so.

    I hate dealing with Mongo. Nothing is simple, everything is expensive, and the performance sucks.

    If you are considering using Mongo, find something else. Even if you have to take a bit more time to learn AWS Dynamo, S3, or Aurora, you should do it; you will save time and money in the long run.

    Mongo, you deserve this negative review. I have given you plenty of opportunities to resolve things and have escalated issues, but you just don't care.

    We wanted to move away from Mongo before; now I can't get rid of it fast enough.
    What problems is the product solving and how is that benefiting you?
    A simple managed database to get up and moving quickly as a developer.
    View all reviews