
Overview
This solution classifies tweets mentioning airline travel into positive, neutral and negative sentiments. It uses text analysis, natural language processing, machine learning techniques to predict sentiment classes for tweets. It automates the manual effort to analyze airline travel related tweets and helps generate faster actionable insights around airline services.
Highlights
- Airline tweets sentiment analyzer takes airline tweets as input and predicts the category of each review as positive, neutral or negative. This solution uses Natural Language Processing to analyze the tweets.
- Airline tweets sentiment analyzer is trained on airline specific tweets using supervised learning which helps in achieving the ability to classify tweets according to features important for airline business.
- Mphasis HyperGraf is an omni-channel customer 360 analytics solution. Need customized Deep Learning/NLP solutions? Get in touch!
Details
Unlock automation with AI agent solutions

Features and programs
Financing for AWS Marketplace purchases
Pricing
Dimension | Description | Cost/host/hour |
|---|---|---|
ml.m5.large Inference (Batch) Recommended | Model inference on the ml.m5.large instance type, batch mode | $16.00 |
ml.m5.large Inference (Real-Time) Recommended | Model inference on the ml.m5.large instance type, real-time mode | $8.00 |
ml.m4.4xlarge Inference (Batch) | Model inference on the ml.m4.4xlarge instance type, batch mode | $16.00 |
ml.m5.4xlarge Inference (Batch) | Model inference on the ml.m5.4xlarge instance type, batch mode | $16.00 |
ml.m4.16xlarge Inference (Batch) | Model inference on the ml.m4.16xlarge instance type, batch mode | $16.00 |
ml.m5.2xlarge Inference (Batch) | Model inference on the ml.m5.2xlarge instance type, batch mode | $16.00 |
ml.p3.16xlarge Inference (Batch) | Model inference on the ml.p3.16xlarge instance type, batch mode | $16.00 |
ml.m4.2xlarge Inference (Batch) | Model inference on the ml.m4.2xlarge instance type, batch mode | $16.00 |
ml.c5.2xlarge Inference (Batch) | Model inference on the ml.c5.2xlarge instance type, batch mode | $16.00 |
ml.p3.2xlarge Inference (Batch) | Model inference on the ml.p3.2xlarge instance type, batch mode | $16.00 |
Vendor refund policy
Currently we do not support refunds, but you can cancel your subscription to the service at any time.
How can we make this page better?
Legal
Vendor terms and conditions
Content disclaimer
Delivery details
Amazon SageMaker model
An Amazon SageMaker model package is a pre-trained machine learning model ready to use without additional training. Use the model package to create a model on Amazon SageMaker for real-time inference or batch processing. Amazon SageMaker is a fully managed platform for building, training, and deploying machine learning models at scale.
Version release notes
This is the version 2.3.
Additional details
Inputs
- Summary
- 1) The input dataset should be in csv format. 2) The column names in input file should be: * text: Airline tweets. 3) input file should not contain more than 20 tweets.
- Input MIME type
- text/csv, text/plain, application/zip
Input data descriptions
The following table describes supported input data fields for real-time inference and batch transform.
Field name | Description | Constraints | Required |
|---|---|---|---|
text | Airline tweets | Type: FreeText | Yes |
Resources
Vendor resources
Support
Vendor support
For any assistance reach out to us at:
AWS infrastructure support
AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.
Similar products
