亚马逊AWS官方博客

Category: Artificial Intelligence

借助 Microsoft Excel 构建 Amazon Lex 聊天机器人

我们的香港机构 (IVE) 已开始尝试将 Amazon Lex 应用于教学、研究和医疗保健领域。我们有很多非技术员工,如 IVE 的英语教师,以及 IVE 育儿、长者及社区服务处的治疗师;他们没有技术知识,不会在 Amazon Lex 控制台中构建自然语言对话自动程序 (聊天自动程序)。我们完成了几个为非技术用户构建 Amazon Lex 聊天自动程序的试点项目。非技术用户将问题填入 Excel 电子表格,然后由开发人员将他们的问题复制到 Amazon Lex 控制台中。当用户想要更改聊天自动程序中的内容时,开发人员都必须重复同样的复制和粘贴过程。

使用 Amazon Comprehend 检测客户评论的情绪

我们以 Amazon Echo、Amazon Echo Dot 和 Amazon Echo Show 的评论为例。我们将上传其他伪造的示例数据 (尽量不损害品牌声誉),然后使用具有细微差别的信息来模拟检索与产品有关的负面情绪,例如,正在召回的有缺陷、受损或危险商品。最后,我们使用 Amazon Athena 对负面评论进行交互查询并导出报告,以便让企业立即采取措施。

Amazon SageMaker BlazingText:在多个 CPU 或 GPU 上并行处理 Word2Vec

今天,我们推出了 Amazon SageMaker 的最新内置算法 Amazon SageMaker BlazingText。BlazingText 是一种无监督学习算法,用于生成 Word2Vec 嵌入,即单词在大型语料库中的密集向量表示。我们很高兴构建了 BlazingText,它可以最快的速度实现 Word2Vec,供 Amazon SageMaker 用户在以下实例上使用:

单一 CPU 实例 (Mikolov 和 fastText 的原始 C 实现)
使用多个 GPU、P2 或 P3 的单一实例
多个 CPU 实例 (分布式 CPU 训练)

使用 NNPACK 库加速 Apache MXNet

Apache MXNet 是供开发人员构建、训练和重复使用深度学习网络的开源库。在这篇博文中,我将向您介绍如何使用 NNPACK 库来加速推理。事实上,当 GPU 推理不可用时,要想从实例中获取更多性能,将 NNPACK 添加到 Apache MXNet 中或许不失为一种简单的方法。和往常一样,“您的情况可能会有所不同”,而且您应该始终运行自己的测试。

AWS Deep Learning AMI 现在推出 TensorFlow 1.5 和全新 Model Serving 功能

AWS Deep Learning AMI 可帮助您快速轻松地开始使用机器学习。AMI 包含大量预建选项,可满足机器学习从业者的各种需求。如果您需要常见深度学习框架的最新版本,Deep Learning AMI 可提供在基于 Conda 的独立虚拟环境中安装的预建 pip 二进制文件。如果您希望测试高级框架功能或者对框架源代码进行微调,包含源代码的 Deep Learning AMI 可提供基于源的自定义框架安装。这些框架通常内建了常见二进制文件中没有的高级优化功能。

Zocdoc 在 AWS 上使用 TensorFlow 帮助患者安心看病

医疗保健行业的情况非常复杂。最近的调查表明,超过一半的美国人不清楚所持保险涵盖的范围,四分之三的人希望通过更简单的方法来确认医生是否在保险公司网络内。

Zocdoc 帮助患者理清了这一混乱局面,让需要医疗保健的个人能够做出更明智的选择,同时找到满足其需求的医疗服务。Zocdoc 致力于优化医疗保健数据来帮助患者,支持其完成该使命的核心就是 AWS 上的深度学习。有了使用 TensorFlow 深度学习框架构建的算法,Zocdoc 可更高效地为患者分配医生。患者可预约 24 小时内看诊,过去全国新患者等待看诊的平均等待时间为 24 天。