亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Amazon Comprehend 和 Amazon Relational Database Service 构建文本分析解决方案

直到现在,从大量非结构化或半结构化内容中提取价值一直都很困难,并且需要机器学习 (ML) 方面的背景。Amazon Comprehend 消除了这些进入障碍,让数据工程师和开发人员可以轻松访问丰富、持续训练的自然语言处理服务。

您可以通过将来自 Amazon Comprehend 的分析与关系业务信息相结合来构建完整的分析解决方案,从而生成有价值的趋势分析。

机器学习的三月也疯狂!

在美国,三月中旬是上亿人观看、投注大学篮球联赛的季节。NCAA 大学篮球联赛鑫战正酣,Randall想借此机会简单介绍一下 Wesley Pasfield 的工作,他是我们的专业服务机器学习专家之一。Wesley 可以从 kenpom.com 和 College Basketball Reference 提取数据以创建模型,使用 Amazon SageMaker 嵌入的 XGBoost 算法来预测疯狂三月的结果。

如何宅在家里构建一个分图利器? – 利用 Amazon SageMaker 快速构建一个基于深度学习端到端的图像分类器

基于深度学习 (Deep Learning) 的图像分类的研究与应用已经进行的如火如荼,对大部分的业务场景来说,更是有着深刻的现实意义 – 基于图片的互联网分享社交应用,如何借助 Deep Learning 在第一时间对用户分享的图片进行实时监测,分类是一个比较典型的应用场景;又例如,电商运营可能希望对所有的产品照片按照产品属性进行自动化分类,减少人工分类的工作;另外,在工业生产线的良品率基于产品图片的自动筛检,以及辅助医疗领域对病理图片的分类等等场景都有着十分广泛的应用前景和实用价值。

当然,利用神经网络 (Neural Networks)构建的深度学习,因为其非线性的特性以及堆叠网络架构使其具备了数以百万计的模型参数在图片分类利用越来越成熟。但是,对于不具备深度学习研发能力的用户,从零构建这样的应用无疑是一种挑战。Amazon SageMaker 是一个完全托管的机器学习服务,它使一般的开发人员和数据科学家可以快速轻松地构建以任何规模的机器学习训练任务,并且提供基于API的端到端的模型部署方案以及 10 多类 Amazon 自带的典型算法,让用户无障碍地轻松构建各种典型的机器学习应用。

好了,我们今天给大家准备了一个有趣的任务 – 构建一个猫狗图片的分类器。

用新的 Amazon Polly 发音标签创建更柔和的语音

语音合成标记语言 (SSML) 是一种标准化标记语言,使开发人员能够修改文本到语音 (TTS) 音频。借助 SSML,您可以控制 TTS 输出的各种声音特征,例如发音,语速和其他元素,以产生听上去更自然的声音体验。

今天,我们很高兴地推出一种您可以与 Amazon Polly 一起使用的新语音 SSML 标签。新的语音标签使您能够产生更柔和的对话。

AWS Deep Learning AMI 现在能够以更快的速度训练适用于 TensorFlow 和 Microsoft Cognitive Toolkit 的 Volta GPU

现在,适用于 Ubuntu 和 Amazon Linux 的 AWS Deep Learning AMI 包含最新版本的 TensorFlow (1.5) 和 Microsoft Cognitive Toolkit (2.4)。这些框架支持 NVIDIA CUDA 9 和 cuDNN 7 驱动程序。这可让您利用 V100 Volta GPU (支持 Amazon EC2 P3 实例) 支持的混合精度训练。在早期在 Volta 上进行的 TensorFlow 1.5 测试中,我们在 p3.8xlarge 实例上使用 ImageNet 合成数据在 FP16 模式下对 ResNet-50 基准进行训练,其速度比使用 TensorFlow 1.4.1 进行训练要快 1.8 倍。

Amazon Polly 让 WordPress 有了自己的声音!

今天,AWS 与 WP Engine 联合发布了适用于 WordPress 的 Amazon Polly 插件。示例插件让 WordPress 创作者可以轻松为书面内容添加文本转语音功能。随着语音交互日益普及,为网站内容赋予音频形式也成了一项必要的工作。此外,被语音功能吸引到您网站的访问者现在可以通过新的渠道 (如内联音频播放器和移动设备上的播客应用程序) 来使用您的内容。现在,读者和听众可以收听您的文章,而不必一直盯着屏幕,比如在驾车、骑自行车甚至是慢跑时收听。