亚马逊AWS官方博客

利用深度强化学习实现金融决策自动化

机器学习 (ML) 已经常态化应用于各个行业,但除了简单的预测场景之外,还有更为复杂的决策制定场景,为了支持长期的战略性目标,人们有时会选择,甚至必须作出非最优的短期决策。利用一种叫做强化学习 (RL) 的 ML 模型,可以学习如何优化策略,从而根据长期目标制定系列决策。

Read More

案例研究:远程分布式敏捷交付客户项目的实践

通过实施远程分布式agile/EDF的一些实践,我们设法将2个月的预期新冠肺炎延迟减少到2个周左右。如果说有哪些你需要注意的,请看以下3方面:(1)远程交付会花费更多精力,需要会前内容准备和人员工具等的设置工作 – 要比往常投入更多才能顺利开展,尤其是在第一次远程迭代期间,(2)不要仅靠操作手册 – 响应客户的挑战,并相应地调整人员工具等的配置工作,并且(3)坚定执行迭代控制会议 – 否则沟通成本只会更高,进而更加阻碍项目进度。

Read More

利用 SageMaker Operator 简化 Kubernetes 上的机器学习任务管理

Amazon SageMaker Operator 可以帮助数据科学家以及开发人员利用Kubernetes的接口来创建和管理SageMaker的任务,如机器学习的模型训练、超参优化、批量转换以及实时推理等。如图所示,SageMaker Operator可以让 开发与运维人员可以通过kubectl命令行或者kubernetes api接口调用的方式来管理和使用SageMaker服务,它就像翻译器一样,在Kubernetes平台与AWS SageMaker 服务之间搭建了一座桥梁,让那些已经很很熟悉Kubenretes 的开发、运维人员在无需投入过多精力的情况下,即可快速地使用SageMaker服务。

Read More

基于 Amazon EKS 在 Pachyderm 框架上 快速搭建 GATK 分析流程

Amazon EKS 简化了 Kubernetes 集群的构建与维护,而 Pachyderm 进一步简化了分析类工作流的运行与管理,两者结合,无疑将使得在 Kubernetes 平台上部署企业级分析平台更为轻松。本文通过一个 GATK 基因分析的示例来演示搭建和使用的过程,为您在 Amazon EKS 上采用该解决方案提供参考。

Read More

通过预热 Amazon WorkSpaces 提升用户操作体验

Amazon WorkSpaces 提供了灵活的付费方式,使得用户可以按月或按小时付费。按月计费适合需要全天使用 Amazon WorkSpaces 或将其用作主要桌面的工作人员。对于并非需要长时间运行的工作场景,比如兼职工作人员、临时性工作分担、频繁出差的人员、短期项目、在线培训和教育等,使用按小时付费是一种能够很好节约成本的方式。Amazon WorkSpaces 计费模式能够非常灵活的进行选择和切换,只需要通过配置相应实例的运行模式(Running Mode)即可。

Read More