亚马逊AWS官方博客

Tag: 使用指南

在基于 AWS Inferentia 的 Inf1 实例上部署 TensorFlow OpenPose,借此显著提高资源性价比

在本文中,我们分步完成了对OpenPose TensorFlow版开源模型的编译,更新自定义端到端图像处理管道,并体验了能够在EC2 Infi1实例之上对ML推理时间做出分析及深度优化的工具。在调优之后,Neuron编译的TensorFlow模型较现有费率最低的GPU实例实现72%的成本节约,且性能仍旧保持一致。本文中阐述的各项操作步骤,也适用于其他ML模型类型与框架。关于更多详细信息,请参阅AWS Neuron SDK GitHub repo。

Read More

使用 Prometheus 与 Grafana 对 Amazon EMR上的分析类工作负载进行监控与优化

本文介绍了如何使用Prometheus与Grafana设置监控系统,借此监控目标EMR集群;以及如何使用Grafana仪表板查看关键指标以优化各类性能问题。大家也可以在Prometheus中设置警报,保证系统在发生严重问题时发出通知,并参考仪表板以缩小故障排查范围。您还可以根据需求扩展这套监控系统,利用它监控多个EMR集群及其他应用程序,打造出一套完整的、覆盖整体基础设施与应用程序的一站式指标监控系统。

Read More

使用 Amazon Personalize 与 Braze 个性化推荐功能优化营销活动参与度

时至今日,营销人员正通过各类消息力争吸引到客户的注意力,这也意味着大家必须能够在正确的时间、以正确的渠道将正确的消息传递给明确定位的正确用户。Braze为前三项难题提供解决方案,而大家也可以将Braze Connected Content与Amazon Personalize集成起来以攻克最后一个挑战,真正整理出能够反映每一位客户当前偏好、具有高度个性化的产品与内容建议。

Read More

使用 AWS Lake Formation 配合 Amazon EMR 控制数据访问与权限

数据的使用在数据格式和规模两个方面已经取得了快速的发展。对不同技术(关系数据库、NoSQL、图数据库、明文文件等)进行管理则会显著增加运营开销。随着竞争烈度的提升,数据规模也将随业务推进而飞速发展,带来更大的计算与存储资源压力。这一切,都迫使组织需求通往更高敏捷性与速度水平的道路。

Read More

使用运行在 Amazon EC2 G4 实例上的 Amazon EMR,提升 RAPIDS XGBoost 性能并降低运营成本

数据的使用在数据格式和规模两个方面已经取得了快速的发展。对不同技术(关系数据库、NoSQL、图数据库、明文文件等)进行管理则会显著增加运营开销。随着竞争烈度的提升,数据规模也将随业务推进而飞速发展,带来更大的计算与存储资源压力。这一切,都迫使组织需求通往更高敏捷性与速度水平的道路。

Read More

开发应用程序迁移方法以使用 Amazon Redshift 使您的数据仓库现代化

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

Read More

使用 Amazon Comprehend Medical 以自然语言为基础查询药物不良反应与召回事件

本文展示一款简单的应用程序,可供制药企业、医疗保健专业人士以及消费者通过药监局及国家卫生研究院等权威来源处查找有用信息。使用这套架构及相关代码库,您可以将这套解决方案整合至关于不良事件分析及报告的其他下游应用程序当中。我们希望本文能够帮助大家接触ML技术、提高ML采用率,同时改善患者的预后与护理质量。

Read More

使用 Amazon Textract 与 Amazon Comprehend 从文档中提取自定义实体

机器学习与人工智能能够极大提升组织的敏捷水平,将原本只能手动完成的任务转为自动化流程,借此增强执行效率。在本文中,我们演示了一套端到端架构,可通过Amazon Textract与Amazon Comprehend提取候选人技能等自定义实体。本文还将大家讲解了如何使用Amazon Textract进行数据提取,以及如何使用Amazon Comprehend通过您的自有数据集训练自定义实体识别器,并借此实现自定义实体识别。这一流程可以广泛应用于各个行业,例如医疗保健与金融服务等。

Read More