亚马逊AWS官方博客

Tag: 使用指南

在 Amazon SageMaker Autopilot 推理管道中部署您的自有数据处理代码

在本文中,我们演示了如何使用您自己的数据处理代码构建起自定义Autopilot推理管道。我们首先训练出特征选择模型,而后使用经过训练的特征选择模型对原始数据进行转换。接下来,我们启动Amazon SageMaker Autopilot作业,针对我们的回归问题自动训练并优化出最佳机器学习模型。我们还构建起一套将特征选择与Autopilot模型加以结合的推理管道。

使用自定义词汇表与 Amazon Augmented AI,提升 Amazon Transcribe 的语音到文本转录效能

在本文中,我们介绍了如何使用Amazon A2I人工审核工作流与Amazon Transcribe自定义词汇表改善自动视频的转录效果。通过本轮演练,您可以快速识别出特定领域的术语,并使用这些术语构建自定义词汇表,以便后续更准确地对其他视频中的相同术语实现转录。对于SEO、针对性文本查询以及按技术术语对批量视频或音频文件进行分组等应用场景,这种对关键技术术语的正确转录都是一项至关重要的能力与前提性保证

在Amazon SageMaker中正确设计资源规划、避免非必要成本

本文向大家介绍了Amazon SageMaker的计费标准,根据机器学习项目内各个阶段正确调整Amazon SageMaker计算资源大小的最佳实践,以及如何通过自动停止闲置的按需notebook实例以避免产生非必要运营成本的具体方法。最后,我们还分享了如何自动检测Amazon SageMaker端点以保证不致发生误删情况。

在 Amazon SageMaker 管道模式下使用 Horovod 实现多 GPU 分布式训练

在Amazon SageMaker上以管道模式使用Horovod的多GPU或分布式训练方法,能够为数据集的各个分片创建独立的训练通道并在数据通道内访问对应分片,借此实现大规模模型训练。这种方式能够缩短在实际训练开始之前将数据集传输至训练实例所占用的时间,因此特别适用于具有大规模训练数据集的Amazon SageMaker训练场景。

通过 Amazon SageMaker R 内核访问数据源

在本文中,我们演示了如何在您的运行环境中接入各类数据源,包括Amazon EMR上的Hive与PrestoDB、Amazon Athena、Amazon Redshift以及MySQL兼容型Amazon Aurora集群等,并借此经由Amazon SageMaker实现分析、剖析并运行统计计算。您也可以通过JDBC将同一方法扩展到其他数据源。

通过置信评分与更高准确率,在 Amazon Lex 上构建高质量对话服务

虽然人们在与机器人交互时,使用的词语往往不那么精确,但我们仍然需要努力提供自然顺畅的用户体验。Amazon Lex此次推出的一系列自然语言理解改进与置信度评分,将帮助大家结合更多上下文信息设计出智能度更高的对话过程。您可以将Amazon Lex当中基于机器学习的intent区域功能与自有业务逻辑结合在用户intent当中,也可以在机器人开发过程中通过测试确定准确的置信度得分阈值,借此确定针对特定intent的样本话语更改是否能够实现预期效果。这些改进将帮助您设计出更加高效的对话流程。

使用 Amazon SageMaker 在生产环境中对机器学习模型 A/B 测试

Amazon SageMaker可帮助用户在端点之上运行多个生产变体,从而轻松对生产环境中的ML模型进行A/B测试。大家可以使用SageMaker提供的功能配合不同训练数据集、超参数、算法以及ML框架测试由此训练出的模型,了解它们在不同实例类型上的执行性能,并将各项因素整合起来形成不同搭配。我们还可以在端点上的各变体之间进行流量分配,Amazon SageMaker会根据指定的分发方式将推理流量拆分并分发至各个变体。

如何在多账户环境下配置并实现安全事件自动化响应

在本文中,我们了解了如何使用AWS原生功能部署自动化事件响应框架。您可以轻松扩展这套框架以满足当前及未来的实际需求。如果您需要进一步扩展,请联系 AWS 专业服务或者AWS合作伙伴。如果您有其他技术问题,请参阅 Amazon GuardDuty或者AWS Config论坛。再次强调,本文介绍的解决方案仅为阐述自动化安全响应概念的示例,无法作为全面的解决方案使用。