亚马逊AWS官方博客

Tag: Amazon SageMaker

使用 Amazon SageMaker 与 Amazon ES 构建一款视觉搜索应用程序

在本文中,我们介绍了如何使用Amazon SageMaker与Amazon ES KNN索引创建基于机器学习的视觉搜索应用程序。我们还使用到在ImageNet数据集上经过预训练的ResNet50模型。当然,大家也可以使用其他预训练模型,例如VGG、Inception以及MobileNet等,并使用自己的数据集进行调优。

Read More

构建自定义 Angular 应用程序以使用 Amazon SageMaker Ground Truth 标记作业

本文展示了如何使用Angular与Ground Truth构建自定义的数据标注UI界面。该解决方案能够在标记作业创建过程中,处理各自定义模板中不同范围之间的通信活动。充分使用Angular等自定义前端框架的功能,帮助大家轻松创建现代Web应用程序,从而在公共、内部或者来自供应商的标记工作人员的配合下切实满足您的数据标注需求。

Read More

Intuit 公司使用 Amazon EMR、Amazon SageMaker 与 AWS Service Catalog 构建数据湖

本文介绍了我们用于构建Intuit数据湖的各项基本单元。我们的解决方案绝非妙手偶得,而是源自Intuit公司数十名工程师多年来积累下的共性最优方法,代表着我们运营经验的技术积注。这些实践使我们得以将PB级别的数据注入数据湖,并为数百个具有不同需求的处理账户提供服务支持。我们的生态系统仍在建设当中,希望我们的经历能够为大家的数据湖探索之旅带来启发。

Read More

使用您自己的 Amazon SageMaker 主动学习标签工作流程

在本文中,您创建了一个主动学习工作流,并使用该工作流从 ML 模型推论和人工工作线程产生高质量的标签。 您可以将此工作流用于各种自定义添加标签任务,以减少为大型数据集添加标签的成本。您可以使用任何自定义学习算法和主动学习逻辑,并根据需要更改此示例。要开始使用 Blazing Text 预览主动学习工作流,请启动 Cloud Formation 堆栈并完成第 1 部分。

Read More

Amazon SageMaker 中 GPU 对计算加速效果的分析与验证

自SageMaker在中国区上线以来,得到了用户的广泛使用。本博客将针对用户在使用SageMaker时对GPU性能的疑问进行分析与验证,通过阅读本博客,用户将了解如何查看实例中GPU的运行状态,如何测试并对比CPU与GPU的性能,以及如何在SageMaker Studio中分别运用CPU和GPU进行神经网络的训练。

Read More

基于 Amazon SageMaker 进行汽车型号的图像识别——一个基于深度学习迁移学习的端到端图像分类器

基于深度学习的图像分类的研究与应用已经进行的如火如荼,对大部分的业务场景来说,更是有着深刻的现实意义 – 基于图片的互联网分享社交应用,如何借助深度学习在第一时间对用户分享的图片进行实时监测,分类是一个比较典型的应用场景;又例如,电商运营可能希望对所有的产品照片按照产品属性进行自动化分类,减少人工分类的工作;另外,在工业生产线的良品率基于产品图片的自动筛检,以及辅助医疗领域对病理图片的分类等等场景都有着十分广泛的应用前景和实用价值。

Read More

使用 Amazon SageMaker 构建基于 gluon 的推荐系统

今天,随着电子商务规模的不断扩大,商品种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关信息和产品的过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。区别于传统的规则推荐,个性化推荐算法通常使用机器学习甚至深度学习算法,对于用户信息与其行为信息充分挖掘,进而进行有效的推荐。

Read More

使用 Amazon SageMaker 运行基于 TensorFlow 的中文命名实体识别

利用业内数据构建知识图谱是很多客户正在面临的问题,其中中文命名实体识别(Named Entity Recognition,简称NER)是构建知识图谱的一个重要环节。我们在与客户的交流中发现,现有的NER工具(比如Jiagu)对于特定领域的中文命名实体识别效果难以满足业务需求,而且这些工具很难使用自定义数据集训练。因此客户迫切想使用业内最先进的算法在行业内数据集上进行训练,以改进现有NER工具的不足。本文将介绍如何使用Amazon SageMaker运行基于TensorFlow的中文命名实体识别。

Read More

利用深度强化学习实现金融决策自动化

机器学习 (ML) 已经常态化应用于各个行业,但除了简单的预测场景之外,还有更为复杂的决策制定场景,为了支持长期的战略性目标,人们有时会选择,甚至必须作出非最优的短期决策。利用一种叫做强化学习 (RL) 的 ML 模型,可以学习如何优化策略,从而根据长期目标制定系列决策。

Read More