Amazon Web Services ブログ

AWS Personal Health Dashboard – 関係するリソースの管理

AWS Service Heath Dashboardをリリースしたのは2008年になります。当時はAWS Cloudは比較的新しく、各サービスの利用状態を確認するのにいい手段でした(現在のService Health Dashboardと比べると、この8年でAWSがどのくらい成長した化が見て取れます)。

現在のダッシュボードは、AWSサービス毎の状態を俯瞰的に表示するため、個別最適されたダッシュボードというわけれではありませんでした。そのため、お客様と会話をすると、全体的なダッシュボードというよりは、お客様の利用サービス、リソースに合わせた状態管理を希望されることもありました。

新サービス Personal Health Dashboard
関心のあるサービスについてより多くの情報を提供できるよう、AWS Personal Health Dashboardをリリースしました。サービス名の通り、このダッシュボードは利用しているAWSサービスのパフォーマンス、可用性に関した個別のビューのみならず、サービスの状態に変化が会った際にはアラートを自動的に発行します。利用中のサービスに関して一元的に監視するためにデザインされており、影響を及ぼすであろう問題に関して、より詳細に可視化することが可能です。ダッシュボードに関係する情報が登録されると、コンソールから通知アイコンを確認出来ます。
1

“issues”をクリックすると、影響するであろうAWSインフラストラクチャが確認できます(これらのデータはすべてテストデータです)。
2

アイテムをクリックするとその問題を修復するためのガイダンスを含むより詳細の情報を確認することができます。
3

また事前に予定されているアクティビティを確認することで注意喚起をうながすこともできます。
4

それ以外にも、興味のあるサービスについての情報を確認することもできます。
5

またCloudWatch Eventsと連携することで、アラート対応でしたり、スケジュールイベント対応を自動化させることも可能です。例えば、自主的にメンテナンスイベント対応が必要なEC2インスタンスを移動することで、メンテナンスイベント通知対応が可能になります。

ご自身のアカウントがビジネスサポート、もしくはエンタープライズサポートに加入頂いてる場合、この新しいAWS Health APIをご利用頂けます。このAPIを使い、Personal HealthDashboardの情報をを既存のITマネジメントツールとの連携されることがが可能になります。

– Jeff(翻訳はSA酒徳が担当しました。原文はこちら)

Blox – Amazon EC2 Container Serviceのための新しいオープンソーススケジューラ

2014年、私はAmazon ECSについてお話して、Dockerベースのアプリケーションをビルドし実行し、そしてスケールさせることを如何に手助けしてくれるかをご紹介しました。そこでは3つのスケジューリングの選択肢(自動、手動、そしてカスタム)について話をし、スケジューラがインスタンスにどの様にタスクを割り当てるかを説明しました。

その時書いた記事では、カスタムスケジューラは現在のクラスタの状態を見るためにListContainerInstancesDescribeContainerInstancesを定期的に呼び出す必要があると記しました。数週前、CloudWatch Eventsのサポートを追加することで各クラスタの状態を追跡する処理を簡素化しました。(これについて詳しくは、Amazon ECSイベントストリームで、クラスタの状態を監視をご覧下さい)

この新しいイベントストリームが出たので、我々はカスタムスケジューラの作成をもっと簡単にしたいと思います。

本日、我々はBloxを開始します。この新しいオープンソースプロジェクトには、イベントストリームを処理してクラスタの状態を追跡し、状態をREST APIで利用可能にするサービスが含まれています。また、クラスタ内の各コンテナインスタンスにタスクを1つだけ実行するデーモンスケジューラも含まれています。このコンテナを1つずつ配置するモデルで、ログ処理やメトリクス収集のワークロードをサポートします。

こちらが”ブロック図”です (ダジャレじゃありません ※訳注 BloxとBlockをかけています):

これはオープンソースのプロジェクトです; プルリクエストや機能要望を楽しみにしています。詳しい情報は、Amazon EC2 Container Serviceより、Bloxをご紹介をご覧下さい。

Jeff;

原文: Blox – New Open Source Scheduler for Amazon EC2 Container Service (翻訳: SA岩永)

AWS CodeBuild ― フルマネージドのビルドサービス

開発者は通常、ソースコードの変更に対する継続的インテグレーションのビルドとテストを実行するために、共有のビルドサーバを構築し運用しなければいけません。継続的インテグレーションを運用するのは面倒なことなので、多くの開発者はそれを避けてローカルマシンでビルドを実行します。これによって、ある開発者の環境では動作するコードが最終的な本番環境ビルドで動作しないという状況が、しばしば引き起こされます。

多くの開発チームは、CI/CD(継続的インテグレーション / 継続的デプロイ)パイプラインの構成要素としてビルドファームを構築します。ビルドファームの構築と運用はコストが高く、また独特のスキルが求められます。普段はビルドファームはあまり使われていませんが、修羅場の時には利用率は100%に達し、未処理のビルドリクエストが増えてしまいます。

(more…)

AWS X-Ray – 分散アプリケーションの内部を見る

大統領自由勲章の受賞者であるGrace Hopperが、プログラムからエラーを特定し取り除く作業にデバッグという言葉を与えた最初の人だと思います。

実際にコンピュータから本物のバグ(虫)を見つけたことはないですが、働き初めた頃にアセンブラ言語のデバッグに膨大な時間を費やしました。その当時は、デバッグとはコードを1ステップずつ実行し、各プロセッサのレジスタの中身をステップの前後で比較し、自分の頭の中のモデルと実際に起こっていることが一致しているかを検証するというものでした。これはとてもうんざりするようなものでしたが、バグが残る余地はほとんどなく、自分のコードがどの様に動くかの深い理解も得られるものでもありました。その後、1ステップずつの実行はなくなり、デバック出力(こんにちは、stderr)に取って代わり、それからログファイルとログ分析ツールへと変わっていきました。

最近の過去数十年で、複雑な分散システムが登場してきたことで、デバッグは変化して新しい意味を持つようになりました。単体テストが個別の関数とモジュールが期待通り動作することを保証しているので、難易度の高いポイントは大規模な中での動作のパターンを見ることに変わっています。クラウドコンピューティング、マイクロサービス、そして非同期な通知ベースのアーキテクチャの組合せによって、システムは数百から数千もの可変な箇所を持つようになりました。こうした複雑なシステムでのパフォーマンス課題を特定し対応していく難しさは増していて、個別サービスレベルの観測情報を集約して意味のある上位の結果にすることに難しさがあります。開発者にとって、EC2インスタンス、ECSコンテナ、マイクロサービス、AWSのデータベースやメッセージサービスを辿って”筋道を追う”ことは簡単ではありません。

これを何とかしましょう!

(more…)

新しい T2.Xlarge および T2.2Xlarge インスタンス

AWSのお客様はT2インスタンスを使う時に得られるコスト効率のよい、バーストベースのモデルを好まれています。これらのお客様は webサーバや開発環境、継続的なインテグレーション用のサーバ、テスト環境、そして小さなデータベース等の一般的な用途でのワークロードを動作させるのにT2インスタンスを使います。これらのインスタンスは豊富なベースラインパフォーマンスと、必要に応じてフルコアのプロセッシングパワーにまで透過的にスケールアップを提供します。(もしこちらがあなたにとって新しいニュースであれば、バースト可能な性能を持つ新しい低コストEC2インスタンスをご参照ください)

本日2つの新しいより大きなT2インスタンスサイズを追加します。- 16GiB メモリの t2.xlargeと32GiB メモリのt2.2xlarge です。これらの新しいサイズにより、お客様はより大きなリソースの要件のアプリケーション向けに T2のバーストモデルの価格とパフォーマンスのメリットを享受頂けます。(t2インスタンスのレンジを拡大するのは、今回が3度目になります;昨年の6月にt2.largeを、昨年の12月にt2.nanoを追加しました。

こちらがT2インスタンスのすべてのサイズ向けのスペックになります。(価格は最近のEC2の値下げを反映しています。US Eastリージョンの料金になります。)

名前 vCPU ベースラインパフォーマンス プラットフォーム メモリ CPU クレジット / 時間 価格 / 時間 (Linux)
t2.nano  1  5%  32bit または 64-bit  0.5  3  $0.0059
t2.micro 1 10%  32bit または 64-bit 1 6 $0.012
t2.small 1 20%  32bit または 64-bit 2 12 $0.023
t2.medium 2 40%  32bit または 64-bit 4 24 $0.047
t2.large 2 60%  64-bit 8 36 $0.094
t2.xlarge 4 90% 64-bit 16 54 $0.188
t2.2xlarge 8 135% 64-bit 32 81 $0.376

既存のワークロードを新しいインスタンスへ移行できる可能性のある方法がこちらになります。

  • t2.largeのワークロードで、より多くのメモリを得るためにt2.xlargeまたはt2.2xlargeへスケールアップ可能
  • c4.2xlargeの断続的なワークロードをt2.xlargeへ移行することで、近いバーストパフォーマンスにて、わずかにコスト削減が可能
  • m4.xlargeの断続的なワークロードをt2.xlargeへ移行することで、より高いバーストパフォーマンスにて、わずかにコスト削減が可能

新しいインスタンスはすべてのAWSリージョンにてオンデマンドおよびリザーブドインスタンスとして本日から利用可能です。

Jeff
翻訳は舟崎が担当しました。原文はこちらです。

改善されたAWS IoT Buttonデベロッパーエクスペリエンスの発表

5月には、正式にAWS IoT Buttonを開始し、開発者コミュニティから提供されたボタンのサポートに圧倒されました。 私たちは皆様の提案に耳を傾け、AWS IoT Buttonの改良された開発者体験を発表することを喜ばしく思います。

今日から、iOSとAndroid用の新しいモバイルアプリでAWS IoT Buttonを設定できます。 モバイルアプリケーションは、ボタンの登録、設定、およびプログラミングのプロセスを簡素化します。 あらかじめ設定されたAWS Lambdaのブループリントを使用して、このボタンをクリックするとSMSや電子メールを送信するボタンを素早くプログラムすることができます。 または、あなたが選択した機能のための独自のLambdaコードを書くことができます。

さらに、新しいバージョンのAWS IoT Buttonは、バッテリー寿命を2倍に設計しました。 amazon.comで今予約注文することができます。 それまで待ちたくない場合は、元のAWS IoTボタンは引き続き使用でき、AWSアカウントごとに20ドルのAWSクレジットを提供します。

AWS IoT Buttonの詳細については、製品ページをご覧ください。

 

原文: Announcing an Improved AWS IoT Button Developer Experience (翻訳: SA福井)

進行中 ー Amazon EC2 Elastic GPUs

私は過去にGPUベースのコンピューティングのメリットについて書いてきました。最近では最大16個のGPUを搭載したP2インスタンスのリリースがありました。過去に指摘したように、GPUは驚異的なパワーとスケールを提供し、同時に結果を得るまでの時間と全体的な計算コストを削減する可能性があります。

今日、私たちが取り組んでいる新しいGPUベースの機能について少しお話したいと思います。 もう少しすると既存のEC2インスタンスタイプにグラフィックアクセラレーションを追加することができるようになります。 G2またはP2インスタンスを使用する場合、インスタンスサイズによってGPUの数が決まります。 これは多くの種類のアプリケーションでうまく機能しますが、他の数多くのアプリケーションでも、より新しい、より柔軟なモデルを利用する準備が整ったと考えています。

Amazon EC2 Elastic GPUs

発表されたAmazon EC2 Elastic GPUは、それぞれ異なる長所を提供します。アプリケーションに最適なEC2インスタンスのタイプとサイズを選択でき、また、インスタンスを起動する際にElastic GPUの使用を指定し、4種類のサイズから選択できます。

Name GPU Memory
eg1.medium 1 GiB
eg1.large 2 GiB
eg1.xlarge 4 GiB
eg1.2xlarge 8 GiB

Elastic GPUをM4、C4、およびX1インスタンスで使用できるようになります。 現在、新しいインスタンスを起動するときに新しく作成されたEBSボリュームを設定する機能がありますが、 Elastic GPUについても同様に起動設定の際に希望のサイズを指定したり、実行中のインスタンスを停止、起動することにより変更が可能です。

OpenGLで始める

Amazonに最適化したOpenGLライブラリは、自動的にElastic GPUを検出して使用します。 OpenGLのWindowsのサポートから始め、その後、Amazon Linux AMIやOpenGLの他のバージョンのサポートを追加する予定です。 また、DirectXVulkanなど他の3D APIのサポートも検討しています(興味があるかどうかをお知らせください)。 既存のMicrosoft Windows AMIのリビジョンにAmazonに最適化したOpenGLライブラリを追加します。

OpenGLはレンダリングには最適ですが、レンダリングされたものはどうやって見ますか? 素晴らしい質問です! 1つの選択肢は、レンダリングされたコンテンツをHTML5と互換性のあるブラウザやデバイスにストリーミングするために、NICE Desktop Cloud Visualization(今年初めに買収 – Amazon Web Services to Acquire NICE)を使用することです。 これには、最近のバージョンのFirefoxとChrome、あらゆる種類の携帯電話とタブレットが含まれます。

このハードウェアとソフトウェアのユニークな組み合わせは、あらゆる種類の3Dビジュアリゼーションやテクニカルコンピューティングアプリケーションの為に素晴らしいホストになると私は信じています。 既に2つのお客様よりフィードバックを共有して頂いております。

ANSYSRay Milhem (VP of Enterprise Solutions & Cloud) のコメント:

ANSYS Enterprise Cloud は、AWSに最適化された仮想シミュレーションデータセンターを提供します。お客様が革新的な製品設計をできるエンドツーエンドのエンジニアリングシミュレーションプロセスをサポートする上で非常に重要である豊富なインタラクティブグラフィックスエクスペリエンスを提供します。Elastic GPUにより、ANSYSは顧客が求める価格と性能に適したサイズにてこのエクスペリエンスをより簡単に提供することができます。私たちはANSYSアプリケーションがElastic GPU上で動作することを認証し、お客様がクラウド上でより効率的に革新を行うことを可能にします。

 

Siemens PLMBob Haubrock (VP of NX Product Management) からもコメントを頂いています:

Elastic GPUは、クラウドにおけるCAD(Computer Aided Design)のゲームチェンジャーです。Elastic GPUを使用することで、プロフェッショナルグレードのグラフィックスを使用して Siemens PLM NX をAmazon EC2上で実行できるようになり、AWSが提供する柔軟性、セキュリティ、グローバルスケールを活用できます。 Siemens PLMは、EC2 Elastic GPUプラットフォームでのNXを認証し、お客様の設計とエンジニアリングの革新の境界を広げるお手伝いをすることに興奮しています。

 

 

新たな認証プログラム

ソフトウェアベンダーや開発者のアプリケーションがElastic GPUやGPUベースのサービスをフルに活用できるよう、本日、AWS Graphics Certification Programを開始します。 このプログラムは、サポートされているインスタンスとGPUタイプの組み合わせにおいてアプリケーションを迅速かつ自動的にテストするためのクレジットとツールを提供します。

Stay Tuned

いつもの通り、利用可能になりましたら、すぐに追加の情報を共有します!

Jeff; (翻訳はSA益子が担当しました。原文はこちら)

開発者プレビュー ー EC2 Instances (F1) with Programmable Hardware

あなたは汎用ツールと非常に特殊な目的のために作られたツール、どちらかを決めなければならない経験をしたことはありませんか? 汎用ツールは、さまざまな問題を解決するために使用できますが、特定な用途に最適な選択ではないかもしれません。目的に合ったツールは1つのタスクに優れていますが、頻繁にその特定のタスクを実行する必要があります。
コンピュータエンジニアは、アーキテクチャと命令セットを設計するときに、この問題に直面し、非常に広い範囲のワークロードにわたって良好なパフォーマンスを実現するアプローチを常に追求しています。 時々新しいタイプの作業負荷と作業条件が発生し、カスタムハードウェアによって最もよく対処されます。 これにはもう1つのバランスのとれた行動、すなわち信じられないほどのパフォーマンスと、四半期または何年もかかる開発ライフサイクルの潜在的なトレードオフをする必要があります。 
 
FPGAへ
カスタムハードウェアベースのソリューションへの興味深いルートの1つとして、フィールドプログラマブルゲートアレイ(FPGA)が知られています。 単一の機能を念頭に置いて設計され、実装するために配線された専用チップとは対照的に、FPGAはより柔軟性があります。 これは、PCボード上のソケットに差し込まれた後、フィールドでプログラムすることができます。 各FPGAには、固定された有限個の単純な論理ゲートが含まれています。 FPGAをプログラミングするということは、論理機能(AND、OR、XORなど)または記憶素子(フリップフロップおよびシフトレジスタ)を単純に接続していく事となります。 本質的にシリアル(いくつかのパラレル要素)で、固定サイズの命令とデータパス(通常32または64ビット)を持つCPUとは異なり、FPGAは多くのオペレーションを並列に実行するようにプログラムでき、 ほとんどすべてのデータ幅、データ大小を操作できます。
この高度に並列化されたモデルは、数値計算の問題を処理するカスタムアクセラレータを構築するのに理想的です。 適切にプログラミングされたFPGAは、多くのタイプのゲノム解析、地震解析、財務リスク分析、大規模なデータ検索、暗号化アルゴリズムとアプリケーションに対して30倍のスピードを提供する可能性があります。
私はこれが素晴らしいことであると願うとともに、独自アプリケーションをスピードアップするために、あなたがFPGAを使いたくなることを願います! 長い道のりの中でいくつかの面白いチャレンジがあります。 第一に、FPGAは伝統的に、より大規模な専用システムのコンポーネントとなっています。 単にあなたが購入してデスクトップに接続することはできませんが、代わりにFPGAが提供ものにはハードウェアプロトタイピング、ハードウェアアプライアンスの構築、大量生産、長期にわたるセールス&デプロイメントサイクルといったソリューションが含まれています。 リードタイムはFPGAの適用範囲を制限する可能性があり、また、ムーアの法則はCPUベースのソリューションを費用対効果に優れたものにするには時間がかかることも意味します。
 
私たちはこの分野をより良くすることができると思います!
 
新しいF1 Instance
今日、新しいF1インスタンスの開発者向けプレビューを開始します。 あなた自身のためにアプリケーションとサービスを構築するだけでなく、 AWS Marketplaceで販売して再利用するためにパッケージ化することができます。 すべてをまとめることで、かつてはFPGA駆動アプリケーション利用の前提条件であった資本集約かつ時間のかかるステップをすべて避けることができ、 他のソフトウェアに使用されているビジネスモデルと同様にする事ができます。 あなた自身のロジックを設計し、クラウドベースのツールを使ってそれをシミュレートして検証し、それを数日で市場に出すことができます。
Intel Broadwell E5 2686 v4プロセッサ搭載(全コアにてベース 2.3 GHz、ターボモード 2.7 GHz、3.0 GHzターボモード 1コア)、最大976 GiBのメモリ、最大4 TBのNVMe SSDストレージ、 1から8個までのFPGAであるF1インスタンスは、コアおよびFPGAベースのロジックを補完する豊富なリソースを提供します。 各FPGAは各インスタンスが専有し、マルチテナント環境でも分離されています。FPGAの仕様は次のとおりです(1つのF1インスタンスに最大8つあります):

  • Xilinx UltraScale+ VU9P (16 nm製造プロセス)
  • 288bit幅のバスをもった64 GiBのECC機能付きメモリを搭載 (4つのDDR4 channels)
  • CPUへの専有PCIe x16インターフェースをサポート
  • 約2.5億のロジックエレメント
  • 約6,800のDigital Signal Processing (DSP) エンジン
  • デバッグ用仮想JTAGインターフェース

複数のFPGAを搭載したインスタンスの場合、専用のPCIeファブリックを使用すると、FPGAが同じメモリアドレス空間を共有し、各方向に最大12 GbpsのPCIeファブリックを介して相互に通信できます。 インスタンス内のFPGAは、低レイテンシ、高帯域幅通信用の400 Gbps双方向リングへのアクセスを共有します(この高度な機能を利用するには独自のプロトコルを定義する必要があります)。

FPGA開発プロセス

開発者プレビューの一環として、FPGA開発者のAMIも利用可能です。 このAMIは開発およびシミュレーション用で、メモリ最適化インスタンスまたはコンピューティング最適化インスタンスで起動し、F1インスタンスを使用して最終的なデバッグおよびテストを行うことができます。

このAMIには、無料でAWS Cloudで使用できる一連の開発ツールが含まれています。 VHDLまたはVerilogを使用してFPGAコードを作成し、 Xilinx Vivado Design Suiteのツールを使用してコンパイル、シミュレート、および検証を行います(サードパーティシミュレータ、高級言語コンパイラ、グラフィカルプログラミングツール、およびFPGA IP librariesも使用できます)。

単純な8ビットカウンタのVerilogコードは次のとおりです。

C
module up_counter(out, enable, clk, reset);
output [7:0] out;
input enable, clk, reset;
reg [7:0] out;
always @(posedge clk)
if (reset) begin
  out <= 8'b0;
end else if (enable) begin
  out <= out + 1;
end
endmodule

これらの言語は、しばしばCのような構文を使用して記述されていますが(その為コードのスタイライズを使用しています)、既存のコードを使用してFPGAで再コンパイルできることを意味している訳ではありません。 代わりに、FPGAプログラミングモデルの理解を深め、ブール代数を学び、伝播遅延やクロックエッジなどを学び始める必要があります。 これを基盤として、お客様の環境でのFPGA利用を考え始めることができます。これがあなたにとってレイヤーが低すぎる場合は、OpenCLを含む多くの既存のHigh Level Synthesisツールを使用してFPGAをプログラミングすることができます。

インスタンスを起動した後、ログインしてパッケージをインストールし、ライセンスマネージャをセットアップしてVivadoツールを実行できるようにしました。 それから、デスクトップにRDP接続し、ターミナルウィンドウを開き、GUIモードでVivadoを起動しました:

サンプルプロジェクト(counter.xpr)を開き、FPGAをどのように設計し、プログラムするかを見てみました。

少しの調査の後、私は最初のFPGAを合成しました(この時点では興味がある要素をクリックしたにすぎず、私は初心者でさえありません)。

ここから、自分のデザインをテストし、Amazon FPGA Image(AFI)としてパッケージ化し、それを自分のアプリケーションに使用したり、AWS Marketplaceにリストすることができます。 数週間以内にこれらのことをすべて行う方法を示せるようにしたいと思っています。

F1ハードウェア開発キット
私がF1インスタンスについて学んだ後、最初の質問の1つは、FPGA、CPU、およびメインメモリ間におけるインターフェイスの関係でした。 F1ハードウェア開発キット(HDK)には、ホストからFPGA、FPGAからメモリ、FPGAからFPGAを含む複数の通信方式用に事前設定されたI / Oインターフェイスとサンプルアプリケーションが含まれています。 また、コンパイルスクリプト、リファレンス例、およびフィールド内デバッグツールセットも含まれています。

最後に
ここで重要な点は、F1インスタンス、クラウドベースの開発ツール、およびFPGAによるアプリケーションの販売が可能であること、その組み合わせがユニークで強力であることです。 AWSのすべてのユーザは、FPGAモデルのパワーと柔軟性を利用できるようになりました。私は、これがまったく新しいタイプのアプリケーションやビジネスに影響を与えると確信しています。

今日から始められます
先に述べたように、本日より米国東部(バージニア北部)リージョン(2017年の早期にインスタンスが一般公開された後、複数の地域に展開する予定です)にて開発者プレビューを開始します。以前にFPGAのプログラミング経験がある、もしくは始めることに興味がある場合は、今すぐサインアップしてください。

Jeff; (翻訳はSA益子が担当しました。原文はこちら)

EC2インスタンスタイプのアップデート – T2, R4, F1, Elastic GPUs, I3, C5

今朝早くに、AWSのCEOであるAndy Jassyが次のアップデートとなるEC2インスタンスのロードマップを発表しました。私たちは高I/O、コンピューティング最適化、メモリ最適化インスタンスの性能を向上させるとともに、FPGAベースのコンピューティングを含めたハードウェアアクセラレーションの領域にも進出します。この投稿では本日の発表をまとめるとともに、追加情報を含むそのほかの投稿たちへのリンクを示します。

これらの新しいインスタンスを計画するにあたって、お客さまが直面している問題やEC2で実行しようとしているワークロードについて十分に理解するために、私たちは非常に多くの時間を費やしました。お客さまの反応はさまざまでしたが、頻繁に言及されていたのはインメモリ分析、マルチメディア処理、機械学習(最新のAVX-512命令を用いたもの)、そして大規模でストレージ集積型のERP(Enterprise Resource Planning)アプリケーションなどでした。

次のインスタンス群が本日から利用可能です。

新しいF1インスタンス – F1インスタンスによって、Field-Programmable Gate ArrayまたはFPGAとして知られる、革新的なプログラマブルハードウェアを使用することができます。コードを記述してFPGA上で実行することにより、多くのゲノム分析、地震分析、財務リスク分析、ビッグデータ検索、そして暗号アルゴリズムなどの多くの処理を最大30倍高速化することができます。また本日、F1インスタンスの開発者プレビューおよびハードウェア開発キットをリリースしただけでなく、お客様がFPGAによるアプリケーションやサービスを構築して、AWSマーケットプレイスで販売することもできるようになりました。詳細については開発者プレビュー ー EC2 Instances (F1) with Programmable Hardwareをご覧ください。

新しいR4インスタンス – R4インスタンスは、昨今のメモリインテンシブなビジネスインテリジェンス、インメモリキャッシング、そしてデータベースアプリケーションのために設計されており、最大488GiBのメモリを搭載しています。R4インスタンスは大きなL3キャッシュと高速なメモリスピードにより、R3インスタンスより高い性能を発揮します。ネットワークの観点では、プレイスメントグループで使用した場合に、12Gbpsの専有EBS帯域幅に加えて、ENAによる最大20Gbpsのネットワーク帯域幅をサポートします。インスタンスは6つのサイズがあり、最大64個のvCPUと488GiBのメモリを選択できます。詳細については次世代のメモリ最適化EC2インスタンス(R4)をご覧ください。

拡張されたT2インスタンス – T2インスタンスはCPUの最大出力を定常的に使わないタイプのワークロードで、大きなパフォーマンスを発揮します。お客さまはT2インスタンスを、アプリケーションサーバやWebサーバ、開発環境、継続的インテグレーションサーバ、そして小規模のデータベースといった、さまざまなワークロードで利用されます。私たちはt2.xlarge(16GiBメモリ)とt2.2xlarge(32GiBメモリ)の2つを新たに加えます。既存のT2インスタンスと同様、新しいサイズも十分なベースラインパフォーマンス(既存のインスタンスに比べて最大4倍)に加えて、コンピューティングパワーが必要なときに全コアをバーストさせることができます。詳細については、新しいT2.XlargeとT2.2Xlargeインスタンスをご覧ください。

そして以下のインスタンス群については準備中です。

新しいElastic GPUs – まもなく既存のEC2インスタンスに対して、1GiBから最大8GiBのGPUメモリと、それに見合うコンピューティングパワーを持った、高パフォーマンスのグラフィックアクセラレーション機能を追加できるようになります。Amazonにより最適化されたOpenGLライブラリは、自動でElastic GPUsを検知します。この新たなEC2インスタンスのプレビューを発表するのに合わせて、AWS Graphic Certification Programを提供します。詳細については進行中 – Amazon EC2 Elastic GPUsをご覧ください。

新しいI3インスタンス – I3インスタンスは、Solid State Driveをベースとして高速で低レイテンシの不揮発性メモリ(Non Volatile Memory Express: NVMe)を搭載しています。4KBブロックサイズに対する最大330万のランダムIOPSと、最大16GB/秒のディスクスループットがあります。このインスタンスは、多くのI/Oインテンシブなリレーショナル&NoSQLデータベース、トランザクション処理、分析ワークロードで要求される水準を満たすように設計されています。I3インスタンスには6つのサイズがあり、最大64個のvCPUと488GiBのメモリ、そして15.2TBのストレージ(ERPアプリケーションに最適です)を選択できます。ストレージに保存されたすべてのデータは、保存時に暗号化されます。また新しいElastic Network Adapter(ENA)もサポートしています。

新しいC5インスタンス – C5インスタンスは、インテルの新しいXeon “Skylake” プロセッサをベースとしており、ほかのすべてのEC2インスタンスよりも高速な処理を行うことができます。Broadwellの後継として、SkylakeはAVX-512をサポートしているため、高度な浮動小数点演算を必要とする機械学習、マルチメデイア処理、科学計算、そして金融業務などに適しています。C5インスタンスには6つのサイズがあり、最大72個のvCPUと144GiBのメモリを選択できます。ネットワークの観点では、ENAをサポートするとともに、デフォルトでEBS最適化となっています。

原文: EC2 Instance Type Update – T2, R4, F1, Elastic GPUs, I3, C5(翻訳: SA 志村)

次世代のメモリ最適化EC2インスタンス(R4)

インメモリプロセッシングには大きな需要があります。日ごとに大きくなるワークロードと、世代を経るごとにパワーを増すCPUのおかげもあり、高性能のビジネスインテリジェンス、分析、データマイニング、そしてレイテンシに敏感なその他のワークロードにおいて、データセットを丸ごとメモリに載せることが、前提条件となりつつあります。分散キャッシングとバッチ処理ワークロードもまた、大量のメモリに素早くアクセスできることの恩恵を受けるでしょう。

私たちは本日、次世代のメモリ最適化EC2インスタンスをリリースします。大きなL3キャッシュと高速なメモリを搭載することで、既存のR3インスタンスより高い性能を発揮します。ネットワークの観点では、プレイスメントグループで使用した場合に、1Gbpsの専有EBS帯域幅に加えて、ENAによる最大20Gbpsのネットワーク帯域幅をサポートします。

R4インスタンスには以下の特徴があります。

  • インテル Xeon E5-2686 v4 “Broadwell” プロセッサ(2.3GHz)
  • DDR4メモリ
  • ハードウェア仮想化(HVM)のみ

ラインナップは次の通りです。

モデル vCPUs メモリ(GiB) ネットワークパフォーマンス
r4.large 2 15.25 最大10 Gigabit
r4.xlarge 4 30.5 最大10 Gigabit
r4.2xlarge 8 61 最大10 Gigabit
r4.4xlarge 16 122 最大10 Gigabit
r4.8xlarge 32 244 10 Gigabit
r4.16xlarge 64 488 20 Gigabit

 

R4インスタンスはオンデマンドインスタンスとリザーブドインスタンスの形で、米国東部(バージニア北部)、米国東部(オハイオ)、米国西部(オレゴン)、米国西部(北カリフォルニア)、欧州(アイルランド)、欧州(フランクフルト)、アジアパシフィック(シドニー)、中国(北京)、そしてAWS GovCloud (US) リージョンにおいて利用可能です。詳細はEC2の料金ページをご覧ください。

原文:New – Next Generation (R4) Memory-Optimized EC2 Instances(翻訳:SA 志村)