Listing Thumbnail

    Restaurant Reviews Topic Extraction

     Info
    Sold by: Mphasis 
    Deployed on AWS
    Restaurant Reviews Topic Extraction is a deep learning algorithm which can extract up to 14 types of aspects from restaurant reviews.

    Overview

    This solution identifies the various aspects a reviewer is mentioning when providing a review for any restaurant business. This can help businesses easily identify which are its most prominent aspects (e.g. price, ambience, taste, quality etc.) which are getting reviewed and what are the associated opinions about them. They can then improve on these aspects to provide a superior customer experience.

    Highlights

    • This solution is trained on a large publicly available dataset of restaurant reviews. Algorithm follows unsupervised attention model based deep learning approach to learn the important keywords in relation with the associated sentence. These words are then arranged into 14 different disjoint sets of aspects and then ranked as per usability in the dataset. New aspects are inferred w.r.t to comparative association of the new words with model learnt set of words per aspect type.
    • Due to unavailability or self-biased behaviour of tagged data, unsupervised approaches of deep learning models are gaining popularity. Restaurant Reviews Topic Extraction is an unsupervised attention based deep learning model, which can pay more attention to impactful words in the dataset. Our algorithm is re-trainable w.r.t to client’s data. Currently, algorithm can identify 14 different types of aspects. Number of aspect types is also tuneable while training the model as per client’s requirement. These capabilities of client specific tuning and inference makes model personalized.
    • Mphasis DeepInsights is a cloud-based cognitive computing platform that offers data extraction & predictive analytics capabilities. Need Customized Deep learning and Machine Learning Solutions? Get in Touch!

    Details

    Delivery method

    Latest version

    Deployed on AWS

    Unlock automation with AI agent solutions

    Fast-track AI initiatives with agents, tools, and solutions from AWS Partners.
    AI Agents

    Features and programs

    Financing for AWS Marketplace purchases

    AWS Marketplace now accepts line of credit payments through the PNC Vendor Finance program. This program is available to select AWS customers in the US, excluding NV, NC, ND, TN, & VT.
    Financing for AWS Marketplace purchases

    Pricing

    Restaurant Reviews Topic Extraction

     Info
    Pricing is based on actual usage, with charges varying according to how much you consume. Subscriptions have no end date and may be canceled any time.
    Additional AWS infrastructure costs may apply. Use the AWS Pricing Calculator  to estimate your infrastructure costs.

    Usage costs (52)

     Info
    Dimension
    Description
    Cost/host/hour
    ml.m5.large Inference (Batch)
    Recommended
    Model inference on the ml.m5.large instance type, batch mode
    $20.00
    ml.m5.large Inference (Real-Time)
    Recommended
    Model inference on the ml.m5.large instance type, real-time mode
    $10.00
    ml.m4.4xlarge Inference (Batch)
    Model inference on the ml.m4.4xlarge instance type, batch mode
    $20.00
    ml.m5.4xlarge Inference (Batch)
    Model inference on the ml.m5.4xlarge instance type, batch mode
    $20.00
    ml.m4.16xlarge Inference (Batch)
    Model inference on the ml.m4.16xlarge instance type, batch mode
    $20.00
    ml.m5.2xlarge Inference (Batch)
    Model inference on the ml.m5.2xlarge instance type, batch mode
    $20.00
    ml.p3.16xlarge Inference (Batch)
    Model inference on the ml.p3.16xlarge instance type, batch mode
    $20.00
    ml.m4.2xlarge Inference (Batch)
    Model inference on the ml.m4.2xlarge instance type, batch mode
    $20.00
    ml.c5.2xlarge Inference (Batch)
    Model inference on the ml.c5.2xlarge instance type, batch mode
    $20.00
    ml.p3.2xlarge Inference (Batch)
    Model inference on the ml.p3.2xlarge instance type, batch mode
    $20.00

    Vendor refund policy

    Currently we do not support refunds, but you can cancel your subscription to the service at any time.

    How can we make this page better?

    We'd like to hear your feedback and ideas on how to improve this page.
    We'd like to hear your feedback and ideas on how to improve this page.

    Legal

    Vendor terms and conditions

    Upon subscribing to this product, you must acknowledge and agree to the terms and conditions outlined in the vendor's End User License Agreement (EULA) .

    Content disclaimer

    Vendors are responsible for their product descriptions and other product content. AWS does not warrant that vendors' product descriptions or other product content are accurate, complete, reliable, current, or error-free.

    Usage information

     Info

    Delivery details

    Amazon SageMaker model

    An Amazon SageMaker model package is a pre-trained machine learning model ready to use without additional training. Use the model package to create a model on Amazon SageMaker for real-time inference or batch processing. Amazon SageMaker is a fully managed platform for building, training, and deploying machine learning models at scale.

    Deploy the model on Amazon SageMaker AI using the following options:
    Deploy the model as an API endpoint for your applications. When you send data to the endpoint, SageMaker processes it and returns results by API response. The endpoint runs continuously until you delete it. You're billed for software and SageMaker infrastructure costs while the endpoint runs. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Deploy models for real-time inference  .
    Deploy the model to process batches of data stored in Amazon Simple Storage Service (Amazon S3). SageMaker runs the job, processes your data, and returns results to Amazon S3. When complete, SageMaker stops the model. You're billed for software and SageMaker infrastructure costs only during the batch job. Duration depends on your model, instance type, and dataset size. AWS Marketplace models don't support Amazon SageMaker Asynchronous Inference. For more information, see Batch transform for inference with Amazon SageMaker AI  .
    Version release notes

    Updated with new features

    Additional details

    Inputs

    Summary

    The model takes a .txt file as input which contains all the reviews.

    Input MIME type
    text/csv, application/json, text/plain
    https://github.com/Mphasis-ML-Marketplace/Restaurant-Reviews-Topic-Extraction
    https://github.com/Mphasis-ML-Marketplace/Restaurant-Reviews-Topic-Extraction

    Input data descriptions

    The following table describes supported input data fields for real-time inference and batch transform.

    Field name
    Description
    Constraints
    Required
    reviews
    Contains list of reviews
    Type: FreeText
    Yes

    Resources

    Vendor resources

    Support

    Vendor support

    For any assistance reach out to us at:

    AWS infrastructure support

    AWS Support is a one-on-one, fast-response support channel that is staffed 24x7x365 with experienced and technical support engineers. The service helps customers of all sizes and technical abilities to successfully utilize the products and features provided by Amazon Web Services.

    Similar products

    Customer reviews

    Ratings and reviews

     Info
    0 ratings
    5 star
    4 star
    3 star
    2 star
    1 star
    0%
    0%
    0%
    0%
    0%
    0 AWS reviews
    No customer reviews yet
    Be the first to review this product . We've partnered with PeerSpot to gather customer feedback. You can share your experience by writing or recording a review, or scheduling a call with a PeerSpot analyst.