AWS Machine Learning Blog
Category: AWS Glue
Super charge your LLMs with RAG at scale using AWS Glue for Apache Spark
In this post, we will explore building a reusable RAG data pipeline on LangChain—an open source framework for building applications based on LLMs—and integrating it with AWS Glue and Amazon OpenSearch Serverless. The end solution is a reference architecture for scalable RAG indexing and deployment.
Intelligent healthcare forms analysis with Amazon Bedrock
In this post, we explore using the Anthropic Claude 3 on Amazon Bedrock large language model (LLM). Amazon Bedrock provides access to several LLMs, such as Anthropic Claude 3, which can be used to generate semi-structured data relevant to the healthcare industry. This can be particularly useful for creating various healthcare-related forms, such as patient intake forms, insurance claim forms, or medical history questionnaires.
Build a robust text-to-SQL solution generating complex queries, self-correcting, and querying diverse data sources
Structured Query Language (SQL) is a complex language that requires an understanding of databases and metadata. Today, generative AI can enable people without SQL knowledge. This generative AI task is called text-to-SQL, which generates SQL queries from natural language processing (NLP) and converts text into semantically correct SQL. The solution in this post aims to […]
Streamlining ETL data processing at Talent.com with Amazon SageMaker
This post outlines the ETL pipeline we developed for feature processing for training and deploying a job recommender model at Talent.com. Our pipeline uses SageMaker Processing jobs for efficient data processing and feature extraction at a large scale. Feature extraction code is implemented in Python enabling the use of popular ML libraries to perform feature extraction at scale, without the need to port the code to use PySpark.
Visualize an Amazon Comprehend analysis with a word cloud in Amazon QuickSight
Searching for insights in a repository of free-form text documents can be like finding a needle in a haystack. A traditional approach might be to use word counting or other basic analysis to parse documents, but with the power of Amazon AI and machine learning (ML) tools, we can gather deeper understanding of the content. […]
How Carrier predicts HVAC faults using AWS Glue and Amazon SageMaker
In this post, we show how the Carrier and AWS teams applied ML to predict faults across large fleets of equipment using a single model. We first highlight how we use AWS Glue for highly parallel data processing. We then discuss how Amazon SageMaker helps us with feature engineering and building a scalable supervised deep learning model.
How Kakao Games automates lifetime value prediction from game data using Amazon SageMaker and AWS Glue
This post is co-written with Suhyoung Kim, General Manager at KakaoGames Data Analytics Lab. Kakao Games is a top video game publisher and developer headquartered in South Korea. It specializes in developing and publishing games on PC, mobile, and virtual reality (VR) serving globally. In order to maximize its players’ experience and improve the efficiency […]
Large-scale feature engineering with sensitive data protection using AWS Glue interactive sessions and Amazon SageMaker Studio
Organizations are using machine learning (ML) and AI services to enhance customer experience, reduce operational cost, and unlock new possibilities to improve business outcomes. Data underpins ML and AI use cases and is a strategic asset to an organization. As data is growing at an exponential rate, organizations are looking to set up an integrated, […]
Prepare data at scale in Amazon SageMaker Studio using serverless AWS Glue interactive sessions
Amazon SageMaker Studio is the first fully integrated development environment (IDE) for machine learning (ML). It provides a single, web-based visual interface where you can perform all ML development steps, including preparing data and building, training, and deploying models. AWS Glue is a serverless data integration service that makes it easy to discover, prepare, and […]
Create a batch recommendation pipeline using Amazon Personalize with no code
With personalized content more likely to drive customer engagement, businesses continuously seek to provide tailored content based on their customer’s profile and behavior. Recommendation systems in particular seek to predict the preference an end-user would give to an item. Some common use cases include product recommendations on online retail stores, personalizing newsletters, generating music playlist […]