亚马逊AWS官方博客

Localization Team

Author: Localization Team

Amazon SageMaker BlazingText:在多个 CPU 或 GPU 上并行处理 Word2Vec

今天,我们推出了 Amazon SageMaker 的最新内置算法 Amazon SageMaker BlazingText。BlazingText 是一种无监督学习算法,用于生成 Word2Vec 嵌入,即单词在大型语料库中的密集向量表示。我们很高兴构建了 BlazingText,它可以最快的速度实现 Word2Vec,供 Amazon SageMaker 用户在以下实例上使用:

单一 CPU 实例 (Mikolov 和 fastText 的原始 C 实现)
使用多个 GPU、P2 或 P3 的单一实例
多个 CPU 实例 (分布式 CPU 训练)

Read More

使用 NNPACK 库加速 Apache MXNet

Apache MXNet 是供开发人员构建、训练和重复使用深度学习网络的开源库。在这篇博文中,我将向您介绍如何使用 NNPACK 库来加速推理。事实上,当 GPU 推理不可用时,要想从实例中获取更多性能,将 NNPACK 添加到 Apache MXNet 中或许不失为一种简单的方法。和往常一样,“您的情况可能会有所不同”,而且您应该始终运行自己的测试。

Read More

新功能 – 区域间 VPC 对等连接

今天我要向您介绍的是区域间 VPC 对等连接。早在 2014 年年初,您就已经能够在同一 AWS 区域的 Virtual Private Cloud (VPC) 之间创建对等连接 (请阅读 Amazon Virtual Cloud 的新 VPC 对等连接功能了解更多信息)。建立连接后,对等 VPC 中的 EC2 实例可以使用自己的私有 IP 地址跨对等连接相互通信,就像它们位于同一网络中一样。

Read More

AWS Deep Learning AMI 现在推出 TensorFlow 1.5 和全新 Model Serving 功能

AWS Deep Learning AMI 可帮助您快速轻松地开始使用机器学习。AMI 包含大量预建选项,可满足机器学习从业者的各种需求。如果您需要常见深度学习框架的最新版本,Deep Learning AMI 可提供在基于 Conda 的独立虚拟环境中安装的预建 pip 二进制文件。如果您希望测试高级框架功能或者对框架源代码进行微调,包含源代码的 Deep Learning AMI 可提供基于源的自定义框架安装。这些框架通常内建了常见二进制文件中没有的高级优化功能。

Read More

Zocdoc 在 AWS 上使用 TensorFlow 帮助患者安心看病

医疗保健行业的情况非常复杂。最近的调查表明,超过一半的美国人不清楚所持保险涵盖的范围,四分之三的人希望通过更简单的方法来确认医生是否在保险公司网络内。

Zocdoc 帮助患者理清了这一混乱局面,让需要医疗保健的个人能够做出更明智的选择,同时找到满足其需求的医疗服务。Zocdoc 致力于优化医疗保健数据来帮助患者,支持其完成该使命的核心就是 AWS 上的深度学习。有了使用 TensorFlow 深度学习框架构建的算法,Zocdoc 可更高效地为患者分配医生。患者可预约 24 小时内看诊,过去全国新患者等待看诊的平均等待时间为 24 天。

Read More

最新 EC2 好东西 – 启动模板与分布置放

AWS re:Invent 推出了多项重要的 EC2 实例类型和功能。 我已经给大家介绍了 M5、H1、T2 无限版和 Bare Metal 实例,以及休眠和新定价模型等竞价功能,Randall 也给大家介绍了 Amazon Time Sync Service,今天我将介绍两个新的功能:分布置放组和启动模板。这两个功能都通过 EC2 控制台和 EC2 API 调用,可以在“aws”分区中的所有 AWS 区域使用。

Read More

利用机器学习和 BI 服务构建社交媒体控制面板

在这篇博文中,我们将展示如何利用 Amazon Translate、Amazon Comprehend、Amazon Kinesis、Amazon Athena 和 Amazon QuickSight 构建受自然语言处理 (NLP) 支持的社交媒体控制面板,以便处理推文。 组织与客户之间的社交媒体交互可以深化品牌认知度。这些交流是发掘销售线索、增加网站流量、发展客户关系并改进客户服务的低成本方法。 在这篇博文中,我们将构建无服务器数据处理和机器学习 (ML) 管道,在 Amazon QuickSight 中提供处理推文的多语言社交媒体控制面板。我们将利用 API 驱动的 ML 服务,来让开发人员只需调用高度可用、可扩展、安全的终端节点,便可轻松向任何应用程序添加智能功能,例如计算机视觉、语音、语言分析和聊天自动程序功能。借助 AWS 内的无服务器产品,这些构建块只需极少的代码便可整合在一起。在这篇博文中,我们将对流经系统的推文执行语言翻译和自然语言处理。 除了构建社交媒体控制面板之外,我们还希望捕获原始数据集和充实后的数据集,并将其长期存储在数据湖中。这将允许数据分析师快速轻松地对此数据执行新型分析和机器学习。 在这篇博文中,我们将展示如何实现以下操作: 利用 Amazon Kinesis Data Firehose 轻松捕获和准备实时数据流,并将其加载到数据存储、数据仓库和数据湖中。在本例中,我们使用的是 Amazon S3。 触发 AWS Lambda 以使用 Amazon Translate 和 Amazon Comprehend (来自 AWS 的两种完全托管式服务) 分析推文。仅需几行代码,我们就能利用这些服务将推文翻译为不同语言,并对推文执行自然语言处理 (NLP)。 在 Amazon Kinesis Data Firehose 内利用独立的 […]

Read More

现已开放 – 伦敦的第三个 AWS 可用区

我们选择某个地理区域(我们称之为“区域”),然后在该区域建立多个独立的可用区,从而不断扩大 AWS 服务范围。每个可用区 (AZ) 都与多个网格具有多项互联网连接和电源连接。 今天,我们很高兴地宣布,我们将开设第 50 个 AWS 可用区,这也是我们在欧洲 (伦敦) 区域的第三个 AZ。这将为您提供更多灵活性,以便您构建具有高可扩展性、高容错能力,并可在英国的多个 AZ 中运行的应用程序。 自从在欧洲 (伦敦) 区域启动以来,我们发现,越来越多的客户使用 AWS 来开发创新型新应用程序,而且这一现象在公共部门和监管行业尤为突出。下面是英国的 AWS 同事提供的几个示例: 企业 – 英国最具权威性的一些企业正在利用 AWS 进行业务转型,这些企业包括 BBC、BT、Deloitte 和 Travis Perkins。Travis Perkins 是英国最大的建筑材料供应商之一,正在实施其史上最大规模的系统和商业变革,包括将其数据中心全部迁移至 AWS。 初创公司 – 跨境支付公司 Currencycloud 已将其所有付款业务和演示平台迁移至 AWS,并因此节约了 30% 的基础设施费用。Clearscore 立志改善混乱的信用积分行业,也已选择在 AWS 上托管整个平台。UnderwriteMe 正在将欧洲 (伦敦) 区域用作托管服务,为客户提供保险平台。 公共部门 – Met Office 选择 AWS 来支持 […]

Read More

使用 AWS Glue 和 Amazon Athena 实现无服务器的自主型机器学习

您是否遇到过需要根据某些属性划分数据集的情况?K-means 是用于划分数据的最常见的机器学习算法之一。该算法能够将数据分成不同的组 (称为集群)。每个样本都被分配到一个集群,这样,相比分配到其他集群中的样本,分配到同一集群中的样本彼此之间更相似。 在这篇博客文章中,我将介绍使用 AWS Glue 提取位于 Amazon S3 上有关出租车行驶情况的数据集,并使用 K-means 根据行车坐标将数据分成 100 个不同的集群。然后,我会使用 Amazon Athena 查询行驶次数和每个集群的大概区域。最后,我会使用 Amazon Athena 来计算行驶次数最多的四个区域的坐标。使用 AWS Glue 和 Amazon Athena 都可以执行这些任务,无需预置或管理服务器。 解决方案概述 我将使用在以前的博客文章中用过的纽约市出租车数据集:使用 AWS Glue、Amazon Athena 和 Amazon QuickSight 协调、查询和可视化各个提供商的数据。我将使用 2016 年 1 月份包含绿色出租车行驶数据的表。 我将向您展示 AWS Glue 作业脚本,该脚本使用 Spark 机器学习 K-means 集群库,基于坐标划分数据集。该脚本通过加载绿色出租车数据并添加指示每一行被分配到哪个集群的列来执行作业。该脚本采用 parquet 格式将表保存到 Amazon s3 存储桶 (目标文件)。可以使用 Amazon Athena […]

Read More