亚马逊AWS官方博客

Category: Artificial Intelligence

在 Amazon SageMaker 管道模式下使用 Horovod 实现多 GPU 分布式训练

在Amazon SageMaker上以管道模式使用Horovod的多GPU或分布式训练方法,能够为数据集的各个分片创建独立的训练通道并在数据通道内访问对应分片,借此实现大规模模型训练。这种方式能够缩短在实际训练开始之前将数据集传输至训练实例所占用的时间,因此特别适用于具有大规模训练数据集的Amazon SageMaker训练场景。

Read More

通过置信评分与更高准确率,在 Amazon Lex 上构建高质量对话服务

虽然人们在与机器人交互时,使用的词语往往不那么精确,但我们仍然需要努力提供自然顺畅的用户体验。Amazon Lex此次推出的一系列自然语言理解改进与置信度评分,将帮助大家结合更多上下文信息设计出智能度更高的对话过程。您可以将Amazon Lex当中基于机器学习的intent区域功能与自有业务逻辑结合在用户intent当中,也可以在机器人开发过程中通过测试确定准确的置信度得分阈值,借此确定针对特定intent的样本话语更改是否能够实现预期效果。这些改进将帮助您设计出更加高效的对话流程。

Read More

通过 Amazon CodeGuru Profiler 简化应用程序的性能优化

我们很高兴能够帮助您使用 CodeGuru Profiler 已更快、更轻松地方式将性能优化能力集成到您的应用程序中。在这篇文章中,我们回顾并学习了如何使用CodeGuru Profiler 的两个最近的增强功能:基于资源的权限设置 和 使用 -javaagent 开关启动探查器代理,而无需修改应用程序的代码。

Read More

Amazon SageMaker 继续引领 Machine Learning,并宣布使用 GPU 实例可将价格最高降低 18%

自 2006 年以来,Amazon Web Services (AWS) 一直在帮助数百万客户构建和管理他们的 IT 工作负载。从初创公司到大型企业,再到公共部门,各种规模的组织都在使用我们的云计算服务,它们实现了前所未有的安全性、弹性和可扩展性水平。每天,他们都能够以比以往更少的时间和更低的成本进行试验、创新和生产部署。因此,他们可以探索、抓住商业机会,并将其转化为工业级产品和服务。

Read More

通过 Amazon Personalize 扩展科学产品组合并适应不断变化的世界

赛默飞世尔(Thermo Fisher)一直努力帮助世界各地的科学家解决我们面临的一些最大挑战。借助 Amazon Personalize,我们极大地提高了我们了解客户工作的能力,并通过多种渠道为他们提供个性化体验。使用 Amazon Personalize 使我们能够专注于解决难题,而不是管理 ML 基础架构。

Read More

使用 Amazon SageMaker 在生产环境中对机器学习模型 A/B 测试

Amazon SageMaker可帮助用户在端点之上运行多个生产变体,从而轻松对生产环境中的ML模型进行A/B测试。大家可以使用SageMaker提供的功能配合不同训练数据集、超参数、算法以及ML框架测试由此训练出的模型,了解它们在不同实例类型上的执行性能,并将各项因素整合起来形成不同搭配。我们还可以在端点上的各变体之间进行流量分配,Amazon SageMaker会根据指定的分发方式将推理流量拆分并分发至各个变体。

Read More