亚马逊AWS官方博客

Category: Artificial Intelligence

加快创新步伐:F1 如何运用 AWS 上的无服务器机器学习提升洞见能力

2020年,F1方程式赛车迎来了自己的70岁生日,同时也是世界上将运动技能与工程技术实力全面结合的极少数顶尖运动之一。技术一直在F1中扮演着核心角色,规则与工具的演变也早已融入F1运动的血液当中。正是这种不断进取、不断探索的精神,令全球赛车迷们痴狂不已,关注自己热爱的车手与车队如何以十分之一秒为单位超越对手、夺取胜利。

Read More

在 AWS 上构建云原生机器学习流水线

近两年,机器学习已经渗透到各行各业,各种人工智能和机器学习的应用蓬勃发展,在其背后实际上会有一个完善的机器学习平台和流水线来支撑模型的开发、测试和迭代。但是这样一个系统性的平台,往往需要通过整合基础架构层和平台层来完成。在本篇Blog中,我们将展现如果通过AWS的服务构建云原生的机器学习流水线。

Read More

使用自定义词汇表与 Amazon Augmented AI,提升 Amazon Transcribe 的语音到文本转录效能

在本文中,我们介绍了如何使用Amazon A2I人工审核工作流与Amazon Transcribe自定义词汇表改善自动视频的转录效果。通过本轮演练,您可以快速识别出特定领域的术语,并使用这些术语构建自定义词汇表,以便后续更准确地对其他视频中的相同术语实现转录。对于SEO、针对性文本查询以及按技术术语对批量视频或音频文件进行分组等应用场景,这种对关键技术术语的正确转录都是一项至关重要的能力与前提性保证

Read More

在Amazon SageMaker中正确设计资源规划、避免非必要成本

本文向大家介绍了Amazon SageMaker的计费标准,根据机器学习项目内各个阶段正确调整Amazon SageMaker计算资源大小的最佳实践,以及如何通过自动停止闲置的按需notebook实例以避免产生非必要运营成本的具体方法。最后,我们还分享了如何自动检测Amazon SageMaker端点以保证不致发生误删情况。

Read More

Amazon Personalize 现将快速变化的新产品与全新内容目录的个性化推荐效果提升达50%

Amazon Personalize提供的全新aws-user-personalization recipe能够在推荐结果中引入交互量较少的新项目,并在重新训练期间通过用户反馈学习项目属性,有效地缓解了项目冷启动问题。关于使用Amazon Personalize优化用户体验的更多详细信息,请参阅Amazon Personalize文档。

Read More

深度解析 TalkingData 使用 DJL 进行大规模深度学习打分应用

TalkingData发现了AWS基于Java开发的深度学习框架DJL(Deep Java Library)可以很好解决Spark在深度学习运算中的一些困境。在这个博客中,我们将带领大家了解TalkingData部署的模型,以及他们是如何利用DJL在Apache Spark上实现生产环境部署深度学习模型。这个解决方案最终将之前的生产架构简化,一切任务都可以在Apache Spark轻松运行,总时间也减少了66%。从长远角度上,这显著节省了维护成本。

Read More

利用 AWS SageMaker BlazingText 对不均衡文本进行多分类

本文使用了 SageMaker BlazingText 实现了文本多分类。在样本不均衡问题上,使用了回译和 EDA 两个方法对少类别样本进行了过采样处理,其中回译方法调用了 AWS Translate 服务进行了翻译再翻译,而 EDA 方法主要使用同义词替换、随机插入、随机交换、随机删除对文本数据进行处理。 本文也使用了AWS SageMaker 的自动超参数优化来为 BlazingText 的文本分类算法找到最优超参数。

Read More