亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Amazon Textract 与 Amazon Comprehend 从文档中提取自定义实体

机器学习与人工智能能够极大提升组织的敏捷水平,将原本只能手动完成的任务转为自动化流程,借此增强执行效率。在本文中,我们演示了一套端到端架构,可通过Amazon Textract与Amazon Comprehend提取候选人技能等自定义实体。本文还将大家讲解了如何使用Amazon Textract进行数据提取,以及如何使用Amazon Comprehend通过您的自有数据集训练自定义实体识别器,并借此实现自定义实体识别。这一流程可以广泛应用于各个行业,例如医疗保健与金融服务等。

Read More

使用 Amazon Translate 以 Office Open XML 格式翻译文档、电子表格与演示文稿

在本文中,我们探讨了如何通过异步批量翻译对DOCX格式的文档进行翻译。关于翻译电子表格与演示文稿,其过程与翻译DOCX文件相同。AWS提供的翻译服务Amazon Translate使用简单,且您只需要根据翻译的每种格式的文档中的字符数(包含空格)进行付费。您现在可以在支持批量翻译的所有区域内翻译Office文档。如果您还不熟悉Amazon Translate,不妨先从Free Tier免费套餐起步。此套餐将从您提交的第一项翻译请求开始,在随后的12个月内每月提供2百万个字符的免费翻译配额。

Read More

SNCF Réseau 和 Olexya 如何将 Caffe2 计算机视觉流水线任务迁移至 Amazon SageMaker 中的 Managed Spot Training

Amazon SageMaker支持从数据注释、到生产部署、再到运营监控的整个ML开发周期。正如Olexya与SNCF Réseau的工作所示,Amazon SageMaker具有良好的框架中立性,能够容纳各类深度学习工作负载及框架。除了预先为Sklearn、TensorFlow、PyTorch、MXNet、XGBoost以及Chainer创建配套Docker镜像与SDK对象以外,您也可以使用自定义Docker容器,几乎任何框架,如PeddlePaddle、Catboost、R以及Caffe2。

Read More

使用 Amazon SageMaker 与 Deep Graph Library 在异构网络中检测欺诈活动

在本文中,我们讲解了如何根据用户交易与活动构建异构图,并使用该图及其他收集到的特征训练GNN模型,最终对交易的欺诈性做出预测。本文还介绍了如何使用DGL与Amazon SageMaker定义并训练具备高预测性能的GNN模型。关于此项目的完整实现以及其他GNN模型详细信息,请参见GitHub repo。

Read More

使用 Amazon Textract、Amazon Comprehend 以及 Amazon Lex 从发票中提取会话式洞见

本文介绍了如何在Amazon Lex中创建一款会话式聊天机器人,使用Amazon Textract从图像或PDF文档中提取文本,使用Amazon Comprehend从文本中提取洞见,并通过机器人实现与洞见的交互。本文中所使用的代码皆发布在GitHub repo 当中,供您随意使用及扩展。我们也期待了解您如何将这套解决方案应用于实际用例,请在评论区中分享您的观点与疑问。

Read More

对 PyTorch BERT 模型进行微调,并将其部署到 Amazon SageMaker 上的 Amazon Elastic Inference

在本文中,我们使用Amazon SageMaker以BERT为起点,训练出一套能够标记句子语法完整性的模型。接下来,我们将模型分别部署在使用Elastic Inference与不使用Elastic Inference的Amazon SageMaker终端节点。您也可以使用这套解决方案对BERT做其他方向的微调,或者使用PyTorch-Transformers提供的其他预训练模型。
Key Messages as Tag

Read More