亚马逊AWS官方博客

2020 年 4 月份 AWS 在线技术讲座

加入我们,观看由 AWS 解决方案架构师和工程师主导的实时在线演示。AWS 在线技术讲座涵盖了一系列主题和多层次的专业知识,包括技术深入探讨、演示、客户示例以及 AWS 专家的实时问答。

Read More

使用 Amazon Elastic Inference 降低 Amazon SageMaker PyTorch 模型的机器学习推理成本

PyTorch 是一个常见的深度学习框架,它使用动态计算图形。借助它,您可以使用命令语言和常用的 Python 代码轻松开发深度学习模型。推理是使用训练模型进行预测的过程。对于使用 PyTorch 等框架的深度学习应用程序,推理成本占计算成本的 90%。由于深度学习模型需要不同数量的 GPU、CPU 和内存资源,为推理选择适当的实例有难度。在一个独立的 GPU 实例上对其中一个资源进行优化通常会导致其他资源利用不足。因此,您可能要为未使用的资源付费。

Read More

使用 Amazon SageMaker 加速自定义 AI 医疗影像算法构建

随着 AI 在医疗领域的快速运用与推广,越来越多医疗用户在AWS寻求弹性,安全,高效,高可用的解决方案。此外,基于医疗的行业属性,医疗用户要求在云上的机器学习流程一方面与 AWS 其它产品如监控,安全,审计等服务集成,以符合 HIPAA 要求;另一方面能贴合本地业务环境无缝集成,灵活部署。随着益体康,晶态科技等优秀的医疗+AI用户通过在 AWS 上快速搭建服务平台,极大缩短了产品从构想、开发,再到部署的时间,越来越多的用户发现 AWS 技术上的优势可以让医疗 AI 用户的模型训练变得更为轻松。这篇blog旨在以开源的医疗影像数据与语义分割算法为例,探索 Amazon SageMaker 加速自定义医疗 AI 影像分割算法构建的业务场景与优势。

Read More

第三部分 SAP on AWS HA Single AZ

SAP作为企业核心应用系统,业务对于系统的RTO/RPO以及高可用支持的场景通常会有较高的要求。通常SAP系统在云上部署会使用DX、VPC、EC2、EBS、S3等相关AWS基础服务。一般在实施初期,进行SAP系统架构设计的时候客户会存在以下疑问:“既然云上AWS都已经保证在一个区域内,Amazon EC2 和 Amazon EBS 的月度正常运行时间百分比至少达到 99.99%,那我们为什么还要部署要采用高可用?” 根据AWS推荐设计原则,搭建一个云端应用系统时,基础原则是“design for failure”,也就是系统架构设计的时候需要考虑到应用系统的每一个层面,包括硬件和软件是可能出现故障的,并据此在应用系统架构设计上消除单一故障点,从而实现高可用性的系统架构。

Read More