亚马逊AWS官方博客

Tag: Amazon SageMaker

Mantium 如何在 Amazon SageMaker 上使用 DeepSpeed 实现低延迟 GPT-J 推理

Mantium 是一家全球云平台提供商,致力于构建 AI 应用程序并对它们进行规模化管理。利用 Mantium 的端到端开发平台,与传统方式相比,各种规模的企业能更快、更轻松地构建 AI 应用程序和实现自动化。借助 Mantium,技术和非技术团队可采用低代码方式原型设计、开发、测试和部署 AI 应用程序。通过自动日志记录、监控和安全功能,Mantium 还解放了软件和 DevOps 工程师,他们不需要花时间做重复性工作了。

推荐系统系列之推荐系统概览(上)

在当今信息化高速发展的时代,推荐系统是一个热门的话题和技术领域,一些云厂商也提供了推荐系统的SaaS服务比如亚马逊云科技的Amazon Personalize来解决客户从无到有迅速构建推荐系统的痛点和难点。在我们的日常生活中,推荐系统随处可见,我根据这几年参与的推荐系统和计算广告项目总结了一些实践经验并以推荐系统系列文章的形式分享给大家,希望大家看后对推荐系统有更全新更深刻的理解。

Data-centric AI之数据集质量

数据集的质量再如何强调都不过分,我认为在数据这个领域,数据集的质量就是第一要务。对于机器学习来说,没有高质量的数据集作为前提,模型就学习不到有用的知识,也就是所谓的“垃圾进,垃圾出”。数据集的质量是个很大的话题,本文根据我在多个计算广告和推荐系统的项目中的实战经验尝试总结一下,其实对于结构化数据建模来说,基本上下面谈到的内容都是通用的。

Data-centric AI之特征工程(第三讲)

这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。

基于AWS和西门子工业边缘的云边协同方案

基于亚马逊云和西门子工业边缘的云边协同方案是一个云和边缘协同的集成解决方案,客户可以从 Siemens Industry Edge 和 亚马逊 云服务中获益。 客户可以在本地继续处理需要更低延迟和强制性数据本地化合规要求的数据或业务逻辑,同时利用丰富的云服务,包括 亚马逊 IOT、Data Lake、Data Analytics、AI/ML 和 CICD等,通过托管服务提供扩展的计算和存储资源。

Data-centric AI之特征工程(第二讲)

这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。

Data-centric AI之特征工程(第一讲)

这两年我们观察到越来越多的算法工程师重视数据的特征工程,AI业界大佬吴恩达教授在2021年提出了从model-centric AI切换到data-centric AI的论调,我个人认为data-centric AI的三个核心就是特征工程,样本工程和数据集质量(本系列文章将围绕这三个核心来介绍)。