亚马逊AWS官方博客

Localization Team

Author: Localization Team

在 Amazon EMR 上运行带有多种 GPU 实例类型的深度学习框架

今天,AWS 很高兴地宣布 Amazon EMR 将支持 Apache MXNet 和新一代 GPU 实例类型,让您可以在进行机器学习工作流程和大数据处理的同时运行分布式深度神经网络。此外,您还可以在采用 GPU 硬件的 EMR 群集上安装并运行自定义深度学习库。通过使用深度学习框架,您可以使用新工具包来处理多种使用案例,包括无人驾驶车辆、人工智能、个性化医疗和计算机视觉。 Amazon EMR 提供一个 Hadoop 托管框架,可以让您轻松、快速且经济高效地使用 Apache Spark、Apache Hive、Presto、Apache HBase 和 Apache Flink 等框架处理 Amazon S3 中的大量数据。您可以低成本安全、高效地处理大量大数据使用案例,包括日志分析、Web 索引、数据转换 (ETL)、财务分析、科学模拟、实时处理和生物信息。 多年来,EMR 一直致力于帮助您运行可扩展的机器学习工作负载。2013 年,我们增加了对 Apache Mahout 的支持,以帮助您使用 Apache Hadoop MapReduce 来运行分布式机器学习工作负载。2014 年,客户开始利用 Apache Spark (我们在 2015 年增加了官方支持),以便利用 Spark ML 中提供的各种开源机器学习库来轻松构建可扩展的机器学习管道。 在过去 2 年内,我们还增加了对 Apache […]

Read More

re:Invent 大会期间的 AWS 云幕后故事

当您漫步在 AWS re:Invent 大会现场时,不妨花点时间来思考一下,对于需要整合在一起的所有要素,您有哪些期望… 从会议地点开始,我的同事们选择最合适的场馆,精心设计各种研讨会,挑选发言嘉宾,制定日程表,选择色彩方案,准备电子或印刷的所有指示牌等等,我们所有这些努力的目标是,希望为您和成千上万的其他 AWS 客户创造一个优良的学习环境。 不过,通常情况下,您看到的只是表面的那一部分而已。在幕后,我们将人员、流程、计划和系统有机地组织起来,将所有这些基础设施安排到位,让各个部分都运作得如此顺利,以至于您通常不会注意到这些细节。 今天我想说的是,re:Invent 大会基础设施的关键部分实际上位于地下。除了为您的手机、平板电脑、相机、笔记本电脑和其他设备提供一流的 Wi-Fi 连接之外,我们还需要确保在从现场直播主题演讲到 WorkSpaces 支持的动手实验室等各项活动中,彼此之间的连接以及互联网连接正常工作。要确保在沿着拉斯维加斯大道上各个酒店中举办的各项活动正常开展,可靠、低延迟的连接至关重要! 感谢 CenturyLink/Level3 的大力支持 多年以来,我们一直在与 Level3 的优秀员工合作,共同实现这一目标。他们最近成为了 CenturyLink 的一份子;CenturyLink 现在是 re:Invent 大会的官方网络赞助商,负责提供将各个 re:Invent 会场连接在一起的光纤网络和线路等服务。 为了让大会顺利举办,他们在大道下面埋设了两英里的暗光纤,路由到两个独立的 AWS 区域中的多个可用区。金沙博览中心配备了 10 Gb 冗余连接,其他场馆 (Aria、MGM、Mirage 和 Wynn) 分别预配置了 2 到 10 Gb 连接,这意味着大道半数以上的区域都支持 Direct Connect。根据某处设施 IT 经理的说法,这可能是拉斯维加斯有史以来配置的最大临时混合网络。 在 Wi-Fi 方面,showNets 接通到同一个网络;您的设备可以直接与 Direct Connect 接入点通信 (这太酷了!)。 下图概要说明了这些功能如何结合在一起: […]

Read More

98、99、100 个 CloudFront 接入点!

九年前,我向您展示了如何使用 Amazon CloudFront 分发内容。2008 年我们推出 CloudFront 时它有 14 个接入点,然后就快速扩展。CloudFront 现在有 89 个边缘站点和 11 个区域边缘缓存,能够为世界各地数百万查看者生成的流量提供支持。 23 个国家/地区,50 个城市,并且还在不断增长 这 100 个接入点遍布全球,站点分布在 23 个国家/地区的 50 个城市。在过去 12 个月中,我们的网络扩大了约 58%,增加了 37 个接入点,其中 9 个位于以下新增城市: 德国,柏林 美国明尼苏达州,明尼阿波利斯 捷克共和国,布拉格 美国马萨诸塞州,波士顿 德国,慕尼黑 奥地利,维也纳 马来西亚,吉隆坡 美国宾夕法尼亚州,费城 瑞士,苏黎世 还有更多接入点正在筹划中,包括阿拉伯联合酋长国的一个边缘站点,目前计划在 2018 年第一季度开放。 为客户创新 如前所述,我们的网络由边缘站点和区域边缘缓存组成。区域边缘缓存是在 re:Invent 2016 大会上首次发布的,它位于我们的边缘站点和您的来源服务器之间,内存量甚至高于边缘站点,使用它,我们可以将内容存储在查看者附近以便提高传输速度,同时减小来源服务器的负担。 虽然位置很重要,但位置只是我们的出发点。我们继续关注安全性,最近发布了 Security Policies 功能,并宣布 CloudFront 是一项 符合 […]

Read More

全新 – AWS OpsWorks for Puppet Enterprise

在去年的 AWS re:Invent 大会,我们推出了 AWS OpsWorks for Chef Automate,这使客户能够将自己的 Chef Automate 服务器交由 AWS 管理。根据客户反馈,今天我们非常激动地将 Puppet Enterprise 引入到 OpsWorks 中。 使用 Puppet Enterprise,您可以通过每个托管节点上部署的 puppet 代理 自动设置、配置和管理实例。您只需定义一次配置,然后使用自动回滚和偏差检测将其应用于数千个节点。AWS OpsWorks for Puppet Enterprise 使您无需维护自己的 Puppet Master,同时无缝地配合您的现有 Puppet 工作清单。 OpsWorks for Puppet Enterprise 将为您管理 Puppet Master 服务器并完成安装、升级和备份等运营任务。它还可以简化节点注册并提供实用的初学者工具包来引导您的节点。更多详情请见下方。 创建托管 Puppet Master 在 OpsWorks 中创建托管 Puppet Master 非常简单。首先导航到 OpsWorks 控制台的 Puppet 部分,然后单击“Create […]

Read More

新交互式 AWS 成本管理器 API

我们在几年前发布了 AWS 成本管理器,以便您能够跟踪、分配和管理 AWS 成本。无论是该工具的发布还是之后进行的补充,反响都很不错。但是,客户的反应却和 Jeff Bezos 说的一样:“精美、出色,但不满意。” 我每天都对此深有感触。每当我们发布一些产品,就会激发客户提出更多要求。例如,当许多客户完全转向 AWS 云并将许多 IT 基础设施迁入其中后,就会请求获得馈送到成本管理器中的原始数据。这些客户希望以编程方式了解其 AWS 成本、按应用程序和部门成本更新账目和会计系统,构建用于汇总开支的高级别控制面板。有些客户甚至已经开始从成本管理器提供的图表和报告中提取数据并遇到了问题! 新成本管理器 API 今天,我们将以编程方式获得馈送到成本管理器中的基础数据。借助新成本管理器 API 提供的一组函数,您可以完成上述所有操作。您可以跨多个维度 (服务、关联帐户、标签、可用区等等) 对成本和使用率数据进行筛选和分组,按天或按月汇总,然后进行检索。这样一来,您就可以从简单处着手 (每月总成本),然后将请求细化到所需的任何细节层次 (写入已标记为 production 的 DynamoDB 表),并在数秒内就获得响应。 以下是具体操作: GetCostAndUsage – 使用筛选和分组功能检索单个账户或所有账户 (组织中的主账户可以访问所有的成员账户) 的成本和使用率指标。 GetDimensionValues – 针对指定筛选条件,检索指定时间段内的可用筛选值。 GetTags – 检索指定时间段内的可用标签键和标签值。 GetReservationUtilization – 使用每日或每月粒度,加上筛选和分组功能,检索指定时间段内的 EC2 预留实例使用率。 我相信这些函数及其返回的数据能够让您做一些真正有趣的事情,帮助您更好地了解自己的业务。例如,您可以标记用于支持各个市场营销活动或开发项目的资源,然后深入研究成本以衡量业务价值。现在,您就能够知道为了应对网络星期一或黑色星期五等重要事件而在基础设施上花了多少钱,分毫不差。 需知信息 在您开始思考如何使用 API 时,请记住以下几点: 分组 – 成本管理器 Web 应用程序为您提供了一个分组级别;API […]

Read More

Amazon QuickSight 更新 – 地理空间可视化、私有 VPC 访问及其他

在 AWS,我们通常不看重或庆祝周年纪念日。我们提供近 100 种服务,如果每个都纪念的话,那我们可能每周都要庆祝好几次,大家一起吃蛋糕、喝香槟。尽管这听起来很有趣,但我们宁愿将工作时间用在倾听客户需求和创新上。话虽如此,Amazon QuickSight 面世至今已有一年多了,我想在此为大家做一个快速更新! 操作中的 QuickSight 如今,成千上万的客户 (从初创公司到企业,遍及交通、法律、采矿和医疗保健等各行各业) 都在使用 QuickSight 来分析和报告其业务数据。 下面是几个示例: Gemini 为加利福尼亚州的工伤律师提供法律证据收集服务。他们需要完成一系列工作,从创建自定义报告和运行一次性查询到创建和共享动态 QuickSight 控制面板以及细分列表和筛选条件。QuickSight 用于跟踪销售管道、衡量订单吞吐量并发现订单处理流程中的瓶颈。 Jivochat 提供了一个实时消息收发平台,从而连接访客和网站所有者。借助 QuickSight,他们可以创建和共享交互式控制面板,并提供对基础数据集的访问权限。这样一来,他们不仅可以共享静态电子表格,还能确保所有人同时查看,并能够根据当前数据及时做出决策。 Transfix 是一个技术驱动的货运市场,可以满足零售、餐饮、制造和其他行业中位列财富 500 强的配送商的货运需求,并提高物流的可见性。借助 QuickSight,不管是 BI 工程师还是非技术业务用户都可以执行分析。他们审视关键的业务和运营指标,包括运输路线、配送公司效率和流程自动化。 回顾过去/展望未来 QuickSight 上的反馈意见非常有帮助。客户告诉我们,他们的员工都在使用 QuickSight 连接公司数据、执行分析并依据数据快速做出决策,而完成所有这些工作无需设置或运行他们自己的 BI 基础设施。我们很乐意听取任何反馈意见,并利用它们推动我们的路线图,从而在短短一年内推出 40 多项新功能。总结如下: 2016 年 12 月 – 推出 QuickSight 企业版。 2017 年 2 月 – 支持 Amazon Athena 和 […]

Read More

宣布为 Apache MXNet 推出 ONNX 支持

今天,AWS 宣布推出 ONNX-MXNet,它是一种用于将 Open Neural Network Exchange (ONNX) 深度学习模型导入到 Apache MXNet 的开源 Python 程序包。MXNet 是功能齐全且可扩展的深度学习框架,可以跨 Python、Scala 和 R 等多种热门语言提供 API。通过 MXNet 的 ONNX 格式支持,开发人员可以使用 PyTorch、Microsoft Cognitive Toolkit 或 Caffe2 等其他框架构建和训练模型,然后将这些模型导入 MXNet 中运行,从而使用 MXNet 高度优化且可扩展的引擎进行推理。 我们还很激动地告诉大家,AWS 将在 ONNX 格式方面参与合作。我们将与 Facebook、Microsoft 和深度学习社区合作,进一步开发 ONNX,让深度学习从业人员都可以访问和使用它。 什么是 ONNX? ONNX 是一种用于对深度学习模型进行编码的开源格式。ONNX 定义神经网络计算图的格式以及图中使用的大量运算符的格式。随着越来越多的框架和硬件供应商支持 ONNX,从事深度学习的开发人员可以轻松地在框架间移动,选择最适合当前任务的框架。 快速入门 我们将介绍如何使用 ONNX-MXNet 将 ONNX 模型导入 MXNet,以及如何使用导入的模型进行推理,从 MXNet […]

Read More

AWS Deep Learning Conda AMI 和 Base AMI 入门

今天,AWS 宣布发布两个新版本的 AWS Deep Learning AMI:基于 Conda 的 AMI 和 Base AMI。本文介绍有关如何充分利用新 AMI 的说明和其他资源。 带 Conda 托管环境的新 Deep Learning AMI 这些面向 Amazon Linux 和 Ubuntu 的新 Deep Learning AMI 预安装了 Python 环境,用于使用 Conda 这个热门开源软件包和环境管理工具创建的深度学习。Conda 托管 Python 环境针对常见深度学习框架 (包括 Apache MXNet、TensorFlow、Caffe2、PyTorch、Keras、CNTK 和 Theano) 进行了预先配置。此外,每个 Python 环境都有两个版本 – Python 2 和 Python 3。使用 AWS 管理控制台登录 AWS EC2 […]

Read More

面向机器学习从业人员的新 AWS Deep Learning AMI

我们非常高兴宣布推出两个新版本的 AWS Deep Learning AMI:一个是基于 Conda 的 AMI,它具有单独的 Python 环境,面向通过 Conda 这个热门开源软件包和环境管理工具创建的深度学习框架;另一个是 Base AMI,它带有 GPU 驱动程序和库,可用来部署您自己的自定义深度学习模型。 在学术界和业界,从框架和算法到新的方法和理论,深度学习技术正在快速发展。对于需要快速安全测试算法、针对特定版本框架进行优化、运行测试和设置基准或从头开始合作项目的开发人员而言,这一切显得非常复杂。虚拟环境可为这些工作提供自由和灵活性,这就是我们现在向 AWS Deep Learning AMI 加入虚拟技术的原因。我们还准备了全新的开发人员资源,以帮助您详细了解这些 AMI,帮助您为项目选择合适的 AMI以及深入学习实践教程。 基于 Conda 的新 Deep Learning AMI 基于 Conda 的 AMI 预安装了 Python 环境,适合使用 Conda 创建的深度学习。每个基于 Conda 的 Python 环境都配置为包括常见深度学习框架及其依赖项。将它视为一个完全备份的虚拟环境,随时可以运行您的深度学习代码,例如,用来训练神经网络模型。我们的分步指南提供了有关如何为所选深度学习框架激活环境或使用简单的单行命令在不同环境之间进行切换的说明。 该 AMI 的优势不止于此。该 AMI 上的环境以相互隔离、独立的沙盒形式运行。这意味着,当您在沙盒内运行自己的深度学习代码时,可以全面了解和控制其运行时环境。您可以安装新软件包、升级现有软件包或更改环境变量,完全不用担心影响 AMI 上的其他深度学习环境。  这种级别的执行环境灵活性和精细控制还意味着您现在可以对深度学习模型运行一致和随着时间推移可再现的测试以及设置性能基准。 最后,该 AMI 提供直接集成 Jupyter […]

Read More

使用 Amazon Rekognition 和图形数据库来了解电影明星的社交网络

Amazon Rekognition 是一种让您能够向应用程序中轻松添加图像分析功能的 AWS 服务。由深度学习提供技术支持的此计算机视觉 API 中增加的最新功能为名人识别。这项简单易用的功能能够检测并识别出各领域数以千计的著名、值得注意或广为人知的人士。用户可以利用该工具根据任何特定兴趣对名人的数字图像库编制索引和进行搜索。 我们看到客户存储个人相关数据的一种常见方式是使用图形数据库。在之前的博文中我们曾仔细讨论过,像 Facebook、LinkedIn 和 Twitter 这样的公司已凭借其对庞大关系网络的管理能力,让整个社会的互动方式发生了彻底变革。本博文的目的就是展示将 Rekognition 的名人及人脸识别功能与图形数据库中存储的关系信息进行配对是多么简单。 这些技术的配对让客户只需要一张图片就能够知道图片中的人物与另一位相关人物的关系。用户甚至可以提交两张图片,然后快速确定这两张不同图片中的两个人之间可能存在怎样的相互关系。这种关系映射的一个有趣例子就是著名的 Kevin Bacon 六度分割游戏。然而,此类应用存在巨大商业价值。执法机构可以从两张图片入手,先使用 Rekognition 来识别当事人,然后再通过查询图形数据库来判断两名当事人是否彼此相识。同样地,酒店类公司也可以使用 Rekognition 和图形数据库来快速识别酒店内的任何名人,以及了解有哪些他们可能认识的其他名人在附近住宿。 在本博文中,我们将展示如何将 Rekognition 与图形数据库(我们将使用Neo4j 社区版)和使用 D3.js 库的 Jupyter Notebook 结合使用。 设置 要开始使用这项令人兴奋的组合技术,首先要从 AWS 实验室 Github 存储库获得一份项目副本。该项目结构主要包含两个方面: <project root> – 这是实际的 Jupyter Notebook 及所有依赖项所在的位置。 <project root>/cft – AWS CloudFormation 模板、示例属性,以及创建基础设施的示例命令。 您将需要添加一个新的或现有的 SSH 密钥。AWS CloudFormation 模板会安装 […]

Read More