亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Deep Graph Library 训练知识图谱嵌入

知识图谱嵌入KGE则为大家提供一种强大的方法,可以对特定节点上的语义与局部结构信息进行编码,您也可以将它们作为机器学习与深度学习模型的输入。DGL-KE支持多种流行嵌入模型,并能够让您通过CPU或GPU的大规模训练得到嵌入结果,训练速度是其他同类技术的2到5倍。

Read More

无代码机器学习:AutoGluon、Amazon SageMaker 与 AWS Lambda 合力加持 AutoML

在本文中,我们介绍了如何在无需编写任何代码的前提下,实现ML模型的训练与推理预测。AutoGluon、Amazon SageMaker以及AWS Lambda的密切配合最终让这一看似不可能的任务成为现实。大家可以使用本文中的示例无代码管道实现ML功能,整个过程轻松便捷,不需要任何编程或数据科学方面的专业知识。

Read More

使用 TensorBoard 实现 TensorFlow 训练作业可视化

在本文中,展示了使用TensorBoard可视化TensorFlow训练作业,以Amazon S3作为日志存储。您可以使用这套解决方案以及对应的示例notebook,通过Amazon SageMaker构建和训练模型,并运行超参数调优作业。此外,您可以使用TensorBoard对不同训练作业中的超参数进行比较,生成并显示分类器混淆矩阵,剖析并可视化训练作业的性能。

Read More

使用 Amazon SageMaker Processing 与 AWS Step Functions 构建机器学习工作流

机器学习(ML)工作流负责编排并自动执行机器学习任务序列,包括数据收集,机器学习模型的训练、测试与评估,外加模型部署。AWS Step Functions能够在端到端工作流中编排并自动执行与 Amazon SageMaker相关的各项机器学习任务。AWS Step Functions数据科学软件开发工具包( AWS Step Functions Data Science Software Development Kit,简称SDK)是一套开源库,使您得以轻松创建包含数据预处理、模型训练和部署的工作流。您可以使用Python创建机器学习工作流,而无需分别设置及整合各项AWS服务。

Read More

使用 A/B 测试衡量 Amazon Personalize 推荐结果的有效性

A/B测试还能够提供客户与Amazon Personalize推荐结果间实际交互方式的宝贵信息。这些结果将根据明确定义的业务指标进行衡量,使您了解推荐结果的有效性,以及该如何进一步调整训练数据集建立起明确认知。在对此过程进行多轮迭代之后,您会发现各项重要指标都将得到改善,客户参与度也将随之提高。

Read More

大多数 Alexa 现在在更快、更经济高效的 Amazon EC2 Inf1 实例上运行

今天,我们宣布,Amazon Alexa 团队已将绝大多数基于 GPU 的机器学习推理工作负载迁移到由 AWS Inferentia 提供支持的 Amazon Elastic Compute Cloud (EC2) Inf1 实例。这样一来,执行 Alexa 的文本到语音转换工作负载时,与基于 GPU 的实例相比,端到端延迟降低了 25%,成本降低了 30%。较低的延迟使 Alexa 工程师能够利用更复杂的算法进行创新,并改善客户的整体 Alexa 体验。

Read More

在 Amazon SageMaker Autopilot 推理管道中部署您的自有数据处理代码

在本文中,我们演示了如何使用您自己的数据处理代码构建起自定义Autopilot推理管道。我们首先训练出特征选择模型,而后使用经过训练的特征选择模型对原始数据进行转换。接下来,我们启动Amazon SageMaker Autopilot作业,针对我们的回归问题自动训练并优化出最佳机器学习模型。我们还构建起一套将特征选择与Autopilot模型加以结合的推理管道。

Read More

加快创新步伐:F1 如何运用 AWS 上的无服务器机器学习提升洞见能力

2020年,F1方程式赛车迎来了自己的70岁生日,同时也是世界上将运动技能与工程技术实力全面结合的极少数顶尖运动之一。技术一直在F1中扮演着核心角色,规则与工具的演变也早已融入F1运动的血液当中。正是这种不断进取、不断探索的精神,令全球赛车迷们痴狂不已,关注自己热爱的车手与车队如何以十分之一秒为单位超越对手、夺取胜利。

Read More