亚马逊AWS官方博客

Category: Artificial Intelligence

使用 Amazon Elastic Inference 降低 Amazon EC2 for PyTorch 模型的推理成本

Elastic Inference 是一项灵活的低成本解决方案,适用于 Amazon EC2 上的 PyTorch 推理工作负载。通过将 Elastic Inference 加速器附加到 CPU 客户端实例,您可以获得类似于 GPU 的推理加速并保持比独立的 GPU 和 CPU 实例更高的成本效益。有关更多信息,请参阅什么是 Amazon Elastic Inference?

Read More

使用您自己的 Amazon SageMaker 主动学习标签工作流程

在本文中,您创建了一个主动学习工作流,并使用该工作流从 ML 模型推论和人工工作线程产生高质量的标签。 您可以将此工作流用于各种自定义添加标签任务,以减少为大型数据集添加标签的成本。您可以使用任何自定义学习算法和主动学习逻辑,并根据需要更改此示例。要开始使用 Blazing Text 预览主动学习工作流,请启动 Cloud Formation 堆栈并完成第 1 部分。

Read More

使用 Amazon SageMaker Debugger 与 Amazon SageMaker Experiments 为机器学习模型剪枝

本文探讨了使用Amazon SageMaker进行迭代模型剪枝的方法,同时介绍了如何通过识别对训练过程鲜有帮助的冗余参数来显著降低模型大小并保持模型准确性。我们还在本文中引入了使用预训练模型的应用示例,可以看到该模型通过迭代剪枝成功实现了准确性保障前提下的“瘦身”任务。

Read More