亚马逊AWS官方博客
Category: Amazon SageMaker
利用Amazon SageMaker Pipeline构建基于StyleGAN2的自动化机器学习流
随着深度学习领域的不断发展,很多生成类模型的效果已经达到“准商用”的水平,因此,也有很多客户选择在这类模型上进行调优和封装并作为应用提供给终端用户,从而实现算法能力产品化。在本博客中,我们将为大家展示如何用利用Amazon SageMaker Pipeline构建包括数据预处理,模型训练,模型推理以及任务状态通知的自动化工作流。在本博客中我们将为大家展示主要部分的技术实现。
利用Neptune图数据库构建工厂知识图谱实践
本文实现了工厂OEE系统上传数据,在AWS Sagemaker里面转化数据,以及在Neptune存放数据的过程,最后在API Gateway 以及Lambda中实现对数据的调用。针对每次OEEEvent发生的 Errorcode进行分析,同时关联工厂产线相关知识比如机器模块,子模块,故障描述,故障原因等一系列机器对应的数据。随着知识数据的不断积累,数据科学家还可以持续使用SageMaker更新知识之间的关联关系,相关的工业场景可以根据实际场景利用本文的方案进行架构设计。
亚马逊云科技工业视觉解决方案落地实践
本文旨在介绍使用人工智能视觉在工业领域的一些应用场景;客户在落地工业智能视觉时面临的一些挑战;和基于亚马逊云科技IoT框架下的工业视觉解决方案的落地架构。
机器学习多步时间序列预测解决方案
AWS ProServe GCR 利用机器学习进行多步时间序列预测解决方案。
通过 Amazon SageMaker 在慕尼黑白血病实验室进行机器学习白血病诊断
在这篇文章中,我们将详细介绍我们在使用 Amazon SageMaker 创建强大的 ML 模型方面的合作,该模型仅使用下一代测序(NGS)数据就可以检测 30 种不同的白血病亚型。
推荐系统系列之推荐系统召回阶段的深入探讨
在当今信息化高速发展的时代,推荐系统是一个热门的话题和技术领域,一些云厂商也提供了推荐系统的SaaS服务比如亚马逊云科技的Amazon Personalize来解决客户从无到有迅速构建推荐系统的痛点和难点。在我们的日常生活中,推荐系统随处可见,我根据这几年参与的推荐系统和计算广告项目总结了一些实践经验并以推荐系统系列文章的形式分享给大家,希望大家看后对推荐系统有更全新更深刻的理解。
使用Amazon SageMaker构建文本摘要应用
雇佣大量的专业人员进行信息精炼或者内容审核无疑要投入大量的资金。而自动文本摘要就显得意义非凡,通过大量数据训练的深度学习模型可以在几百毫秒内产生文本摘要,这大大地提升了摘要生成效率,节约了人力成本。
基于Amazon SageMaker构建细粒度情感分析应用
通过AI把用户留言进行了更细粒度的分析,使得客户可以更精准地对(几千倍几万倍的机器标签)用户进行分类,从而在广告投放、行为诱导、客户服务和产品升级方面有更优化的方法。
从软件哲学角度谈Amazon SageMaker
如果你喜欢哲学并且你是一个IT从业者,那么你很可能对软件哲学感兴趣,你能发现存在于软件领域的哲学之美。本文我们就从软件哲学的角度来了解一下亚马逊云科技的拳头级产品Amazon SageMaker,有两个出发点:一是SageMaker本身设计所遵循的软件哲学;二是从软件哲学的角度我们应该如何使用SageMaker提供的功能。
推荐系统系列之推荐系统概览(下)
在当今信息化高速发展的时代,推荐系统是一个热门的话题和技术领域,一些云厂商也提供了推荐系统的SaaS服务比如亚马逊云科技的Amazon Personalize来解决客户从无到有迅速构建推荐系统的痛点和难点。在我们的日常生活中,推荐系统随处可见,我根据这几年参与的推荐系统和计算广告项目总结了一些实践经验并以推荐系统系列文章的形式分享给大家,希望大家看后对推荐系统有更全新更深刻的理解。