亚马逊AWS官方博客

Category: AWS Lambda*

国际消费电子展 (CES) 上的 AWS IoT、Greengrass 和 Machine Learning 车联网应用介绍

上周,我参加了总部位于西雅图的 INRIX 公司总裁 Bryan Mistele 的一场演讲。Bryan 的演讲围绕交通运输的四大主要属性(通常用缩写形式 ACES 表示),展望了交通运输业的未来: 自主化 – 汽车和卡车将获得扫描和感测环境的能力,能够在无需人为输入的情况下进行导航。 互连化 – 所有类型的汽车都将能够利用与其他汽车以及与基于云的资源之间的双向连接(始终连接或间歇连接)。它们可以上传路况和性能数据、彼此通信,从而以车队的方式行驶,充分利用交通和气象数据。 电气化 – 电池和发动机技术的持续发展将使电动车更加便捷、经济且环保。 共享化 – 共乘服务会改变用车模式,从拥车模式改变为“即服务”模式(听起来是否有几分熟悉?)。 无论单独来看还是整体来看,这些新兴的属性都意味着,未来十年我们将看到和使用的汽车和卡车将与过去截然不同。 AWS 伴您出行 AWS 客户已经在利用我们的 AWS IoT、边缘计算、Amazon Machine Learning 和 Alexa 产品来让这样的未来照进现实 – 汽车制造商、其一级供应商和汽车科技初创公司都在将 AWS 用于自己的 ACES 计划。AWS Greengrass 在这方面发挥了重要作用,富有吸引力的设计俘获了客户,并帮助他们在边缘处增加处理能力和机器学习推测。 AWS 客户 Aptiv(前身为 Delphi)在 AWS re:Invent 会议上探讨了他们的 Automated Mobility on Demand (AMoD) 智能汽车架构。Aptiv 的 […]

Read More

如何利用 AWS Lambda 和 Tensorflow 部署深度学习模型

深度学习已经彻底变革了我们处理和加工真实数据的方式。深度学习的应用程序有多种类型,包括用于整理用户照片存档、推荐书籍、检测欺诈行为以及感知自动驾驶车辆周边环境的应用程序。 在这篇文章中,我们将向您逐步演示如何通过 AWS Lambda 使用自定义的训练模型,从而大规模利用简化的无服务器计算方法。在此过程中,我们将介绍一些核心 AWS 服务,您可以使用这些服务以无服务器的方式运行推理。 我们还将了解图像分类:现在已有多种表现非常出色的开源模型可供使用。通过图像分类,我们可以使用深度学习中两种最常用的网络类型:卷积神经网络和全连接神经网络 (也称为 Vanilla 神经网络)。 我们将向您演示在 AWS 中的什么位置放置训练模型,以及以何种方式打包您的代码,以便 AWS Lambda 通过推理命令执行这些代码。 在这篇博客文章中,我们将讨论以下 AWS 服务:AWS Lambda、Amazon Simple Storage Service (S3)、AWS CloudFormation、Amazon CloudWatch 和 AWS Identity and Access Management (IAM)。使用的语言和深度学习框架包括 Python 和 TensorFlow。此处介绍的流程也适用于任何其他深度学习框架,例如 MXNet、Caffe、PyTorch、CNTK 及其他框架。 整体架构 AWS 架构 从流程的角度而言,深度学习系统的开发和部署与开发和部署传统解决方案应该没有不同。 下图描述了一种可能的开发生命周期: 如您从图中可见,通常的软件开发流程经过多个阶段,从开发环境中的概念成形和建模,直到生产环境中的最终模型部署。在大部分情况下,开发阶段会有多次快速迭代,需要不断对环境进行更改。通常,这会影响在软件/模型开发期间所用资源的性质和质量。对于敏捷开发而言,能够快速构建/重建/停用环境至关重要。所构建软件的快速改变随之而来的应该是基础设施调整。敏捷开发和加速创新的先决条件之一是能够通过代码管理基础设施 (称为 IaC:基础设施即代码)。 软件设计管理、构建和部署的自动化是持续集成和持续交付 (CI/CD) 的一部分。虽然本文不会深入介绍精心编排的 CI/CD 管道的细节,不过,对于任何开发运营团队来说,如果希望构建可重复的流程,以实现开发/部署敏捷性和流程自动化,就应该记住这一点。 AWS 在社区中推出了众多服务和实践,可简化开发任务。一个环境,只要使用自动化代码构建,那么只需数分钟就可以轻松地采用和复制,例如,可以根据开发环境所用的模板构建暂存和生产系统。 此外,AWS […]

Read More