亚马逊AWS官方博客
基于 AWS IoT 证书授权最终用户访问云上资源
前言 企业在 AWS 上构建自己的应用系统时,常常需要授权应用系统的最终用户直接访问 AWS 资源(例如:允许 […]
Read More新增功能——使用Amazon SageMaker Feature Store存储、发现并共享机器学习特征
今天,我们很高兴公布Amazon SageMaker Feature Store。作为Amazon SageMaker中的一项新功能,Feature Store将帮助数据科学家与机器学习工程师轻松安全地存储、发现并共享训练与预测工作流中使用的被选中数据。
Read MoreAmazon Forecast现可支持对单一条目进行准确性评估
我们高兴地宣布,现在您已经可以在Amazon Forecast当中评估单一条目的预测准确性,借此更好地了解您的预测模型在最重要的少数核心条目上拥有怎样的预测表现。
Read More使用Amazon SageMaker原生TorchServe集成在生产中支持PyTorch模型
随着客户对于TorchServe需求的不断增长以及PyTorch社区的快速发展,AWS致力于为客户提供一种通用且高效的PyTorch模型托管方式。无论您使用的是Amazon SageMaker、 Amazon Elastic Compute Cloud (Amazon EC2)还是 Amazon Elastic Kubernetes Service (Amazon EKS), 我们都将不断优化后端基础设施并为开源社区提供支持。
Read More利用Amazon ReplaceRootVolume替换实例EBS根卷
客户在使用EC2过程中,难免会碰到诸如根卷损坏或操作系统配置错误,导致无法连接和登录的情况。这会增加日常迁移、重建等繁杂的工作。尤其是客户在采用了存储优化实例(如i3、i3en、d2等)下,自建的服务下(如Hadoop、Kafka),数据丢失、拷贝等成本会非常高。 这些在实例存储上昂贵的数据复制操作、繁杂的迁移重建等工作,往往是客户无法承受的。现在依托Amazon ReplaceRootVolume新特性,将帮助客户解决上述问题,轻松应对出现的各种挑战。
Read MoreAmazon SageMaker使用数十亿条参数简化深度学习模型训练
今天,我们高兴地宣布,Amazon SageMaker已经在大型深度学习模型的训练方面迎来简化,帮助更多缺少丰富硬件资源的客户踏入高阶深度学习之门。
Read MoreAmazon Go 无人零售商店揭秘
几天前 CNBC 的一则新闻引起了我的兴趣。文章说的是美国康涅狄格州布鲁克菲尔德一家在建商店的有了应用“Jus […]
Read More大道至简-使用Athena对数据ETL处理
This article introduces the use of Athena to crop, enrich, repartition, format conversion and other ETL operations
Read More新增功能 – 适用于 Amazon Elastic File System 的更低成本存储类别
Amazon Elastic File System (Amazon EFS) 为跨 Amazon Elast […]
Read MoreAWS Fault Injection Simulator – 通过对照实验提高弹性
AWS 为您提供构建高度可靠的系统所需的组件:多区域(每个都有多个可用区)、Amazon CloudWatch […]
Read More