亚马逊AWS官方博客
Tag: sagemaker
带你SSH到Amazon SageMaker 训练实例一探究竟
带你SSH到Amazon SageMaker 训练实例一探究竟
Read More使用Amazon Redshift ML构建机器学习应用
自从2018年起,亚马逊云科技发布了一系列的产品和服务,例如Amazon SageMaker,Amazon Aurora ML,Amazon Redshift ML,和2021年reInvent发布的Amazon SageMaker Canvas,使得不同角色的工程师越来越容易构建机器学习应用,降低应用机器学习的门槛,以实现普惠机器学习。本系列文章将以上述产品为核心,从不同的角度帮助企业中不同部门的人员构建机器学习应用。
Read More使用 Amazon SageMaker 构建机器学习应用
在本篇文章中,我们将介绍如何在Amazon SageMaker上开展机器学习模型训练,我们将在Notebook上面分别演示针对同一个数据集,分别使用XGBoost,SageMaker内置算法和AutoGluon进行模型训练。
Read More基于 Amazon SageMaker Canvas 无代码构建分类模型
在本篇文章中,我们将介绍如何无需写代码即可构建机器学习应用,Amazon SageMaker Canvas提供无代码、可视化的工作环境,即使没有机器学习背景知识,也可以基于自己业务需要构建机器学习模型。
Read More如何在数据库里面使用SQL语句直接调用Amazon机器学习服务进行推理
本文主要讲解了如何在Amazon Aurora数据库里面使用SQL语句直接调用Amazon Comprehend 和Amazon SageMaker机器学习服务进行推理,让业务后端开发人员即使没有机器学习知识,也可以快速使用最熟悉的SQL语句调用机器学习服务,为业务提升价值。
Read MoreLightGBM 算法框架运行在Amazon Sagemaker
本文将介绍如何使用lightgbm以及如何借助Amazon Sagemaker来提高使用lightgbm的机器学习效率
Read More使用可视化工具加载 Amazon Redshift 数仓数据完成机器学习数据准备和模型快速验证
在本篇文章中,我们将会为您展示一个简单的 2 分类预测的机器学习场景,通过加载存放于数据仓库Amazon Redshift 中的银行客户画像和业务行为特征,来完成建模前特征的快速准备和预测是否办理存款业务模型的快速验证。
Read More用于预测COVID-19传播路径的COVID-19模拟器与机器学习工具包
在本文中,我们将详细描述疾病传播模拟的工作原理,如何通过监督学习以寻找模拟参数,并根据干预措施评分对疾病的传播率做出预测。
Read More利用 AWS SageMaker BlazingText 对不均衡文本进行多分类
本文使用了 SageMaker BlazingText 实现了文本多分类。在样本不均衡问题上,使用了回译和 EDA 两个方法对少类别样本进行了过采样处理,其中回译方法调用了 AWS Translate 服务进行了翻译再翻译,而 EDA 方法主要使用同义词替换、随机插入、随机交换、随机删除对文本数据进行处理。 本文也使用了AWS SageMaker 的自动超参数优化来为 BlazingText 的文本分类算法找到最优超参数。
Read More在 Amazon SageMaker Service 中使用 R 绘制统计过程控制图(SPC)实现流程稳定性预警
在实际的运营场景中,我们可以通过统计过程控制图(SPC:Statistical Process Control Chart)监控运营过程的稳定性,对过程存在的异常因素进行预警,以实现故障减少,用户体验提升和运营成本降低的目的。本文将介绍如何在Amazon SageMaker Service中,通过R语言来绘制统计过程控制图,从而可视化监控运营过程数据。
Read More