Amazon Web Services ブログ

Category: Analytics

AWS Glue zero-ETLによるSAPデータの取り込みとレプリケーション

AWS Glue zero-ETLは、SAP BW、ABAP、CDSビューなどのODP対応・非対応データソースからのデータ取り込みとレプリケーションを実現するサービスです。抽出されたデータはAmazon Redshift、Amazon SageMaker lakehouseアーキテクチャ、Amazon S3 Tablesに書き込まれ、Amazon QやAmazon Quick Suiteと組み合わせることで、自然言語クエリによるSAPデータ分析、AIエージェントの自動化、企業データ全体にわたるコンテキストインサイトの生成が可能になります。

AWS Glue Data Catalog での Apache Iceberg テーブルのカタログフェデレーションの紹介

Apache Iceberg は、大規模で堅牢かつ信頼性の高い分析を求める組織にとって、オープンテーブルフォーマットの標準的な選択肢となっています。しかし、企業は異なるカタログシステムを持つ複雑なマルチベンダー環境をますます多く扱うようになっています。マルチベンダー環境で運用する組織にとって、これらのシステム間でデータを管理することは大きな課題となっています。この断片化は、特にアクセス制御とガバナンスに関して、運用上の複雑さを大幅に増加させます。Amazon Redshift、Amazon EMR、Amazon Athena、Amazon SageMaker、AWS Glue などの AWS 分析サービスを使用して AWS Glue Data Catalog 内の Iceberg テーブルを分析しているお客様は、リモートカタログのワークロードでも同じ価格性能を得たいと考えています。これらのリモートカタログを単純に移行または置き換えることは現実的ではなく、チームはシステム間でメタデータを継続的に複製する同期プロセスを実装・維持する必要があり、運用上のオーバーヘッド、コストの増加、データの不整合のリスクが生じます。

Amazon OpenSearch Service ベクトルデータベースを自動最適化する

AWS は Amazon OpenSearch Service ベクトルエンジンの自動最適化機能の一般提供を発表しました。この機能により、専門知識やインフラストラクチャ管理なしに、1 時間以内でベクトルデータベースを最適化できます。検索品質、速度、コストのトレードオフを自動評価し、最適なインデックス構成を推奨します。

Amazon OpenSearch Service の GPU アクセラレーションで 10 億規模のベクトルデータベースを 1 時間以内に構築

AWS は Amazon OpenSearch Service での GPU アクセラレーションによるベクトルインデックス作成の一般提供を発表しました。10 億規模のベクトルデータベースを 1 時間以内に構築でき、最大 10 倍高速化しながらコストを 4 分の 1 に削減できます。

Amazon Quick Suite の埋め込みチャット機能を発表

本日、Amazon Quick Suite の埋め込みチャット機能を発表します。これは、お客様のアプリケーションに直接埋め込むことができる統合された会話体験です。このリリースにより、構造化データと非構造化ナレッジを単一の会話で統合する Quick Suite のエージェント型 AI チャットを、ユーザーが既に使用しているツールに組み込むことができます。これにより、組織は会話インターフェース、オーケストレーションロジック、データアクセスレイヤーをゼロから構築することなく、アプリケーション内にインテリジェントでコンテキストに応じた回答を簡単に追加できます。

Amazon OpenSearch Service が GPU アクセラレーションと自動最適化でベクトルデータベースのパフォーマンスとコストを改善

本日、Amazon OpenSearch Service において、サーバーレス GPU アクセラレーションとベクトルインデックスの自動最適化を発表しました。これにより、大規模なベクトルデータベースをより高速かつ低コストで構築でき、検索品質、速度、コストの最適なトレードオフを実現するようにベクトルインデックスを自動的に最適化できます。

本日発表された新機能は以下のとおりです。

GPU アクセラレーション – GPU アクセラレーションを使用しない場合と比較して、最大 10 倍高速にベクトルデータベースを構築でき、インデックス作成コストを 4 分の 1 に削減できます。また、10 億規模のベクトルデータベースを 1 時間以内に作成できます。コスト削減と速度の大幅な向上により、市場投入までの時間、イノベーションの速度、大規模なベクトル検索の導入において優位性を得ることができます。
自動最適化 – ベクトルの専門知識がなくても、ベクトルフィールドの検索レイテンシー、品質、メモリ要件の最適なバランスを見つけることができます。この最適化により、デフォルトのインデックス設定と比較して、コスト削減と再現率の向上を実現できます。手動でのインデックスチューニングには数週間かかることがあります。

Cluster Insights のご紹介: Amazon OpenSearch Service クラスター向け統合モニタリングダッシュボード

Amazon OpenSearch Service クラスターは、CloudWatch や Amazon OpenSearch Service コンソールを通じてアクセスできる豊富な運用メトリクスを提供し、効果的なパフォーマンスモニタリングとアラート作成をサポートします。しかし、クラスター内の回復力やパフォーマンスの課題を特定することは困難な場合があります。リソースを大量に消費するクエリを特定したり、パフォーマンス低下の傾向を把握したりするプロセスには時間がかかることがあります。

これらの課題に対処するため、私たちは Cluster Insights をリリースしました。これは、厳選されたインサイトと実行可能な緩和手順を提供する統合ダッシュボードです。このダッシュボードは、ノード、インデックス、シャードレベルの詳細なメトリクスを表示し、最高の回復力と可用性を維持するためのセキュリティと回復力のベストプラクティスの簡潔なサマリーを提供します。

このブログでは、主要な機能とメトリクスを含む Cluster Insights のセットアップと使用方法について説明します。最後まで読むと、Cluster Insights を使用して OpenSearch Service クラスター内のパフォーマンスと回復力の問題を認識し、対処する方法を理解できるようになります。

AWS Well-Architected フレームワーク用 Amazon OpenSearch レンズのご紹介

今年初め、AWS は AWS Well-Architected ホワイトペーパーである Amazon OpenSearch Service レンズをリリースしました。AWS Well-Architected フレームワークは、アーキテクチャを評価し、スケーラブルな設計を実装するための一貫したアプローチを提供します。このフレームワークを使用して、Amazon OpenSearch Service レンズは AWS Well-Architected レビューを実施し、OpenSearch Service デプロイメントの技術的リスクを評価・特定する方法を概説しています。
この記事では、Amazon OpenSearch Service レンズを使用して、OpenSearch Service ワークロードをアーキテクチャのベストプラクティスに照らして評価する方法を紹介します。

Amazon Kinesis Data Streams で 10 倍大きなレコードサイズをサポート: リアルタイムデータ処理の簡素化

Amazon Kinesis Data Streams で、レコードサイズの上限が従来の 10 倍となる 10MiB までサポートされるようになりました。この機能強化により、既存の Kinesis Data Streams API をそのまま使用しながら、断続的に発生する大きなデータペイロードをデータストリームに送信できるようになりました。また、PutRecords リクエストの最大サイズも 5MiB から 10MiB に 2 倍に拡大され、IoT 分析、変更データキャプチャ(CDC)、生成 AI ワークロードにおけるデータパイプラインの簡素化と運用オーバーヘッドの削減が実現します。