Sign in Agent Mode
Categories
Your Saved List Become a Channel Partner Sell in AWS Marketplace Amazon Web Services Home Help

Reviews from AWS customer

45 AWS reviews

External reviews

296 reviews
from and

External reviews are not included in the AWS star rating for the product.


4-star reviews ( Show all reviews )

    Himanshu Y.

Great Experience with Elastic Search

  • January 23, 2026
  • Review provided by G2

What do you like best about the product?
It was easy to set up, and it was just as easy to get started right away.
What do you dislike about the product?
It’s a little slow when indexing bulk records from a CSV file.
What problems is the product solving and how is that benefiting you?
Elasticsearch helped us set up typo-resistant, faster searches to meet our clients’ search needs.


    Vaibhav Shukla

Search performance has transformed large-scale intent discovery and hybrid query handling

  • January 22, 2026
  • Review from a verified AWS customer

What is our primary use case?

My use case has evolved over time with Elastic Search. Initially, we started with it as a searching solution. Before Elastic Search, our primary source of truth was SQL databases, the traditional RDBMS. We thought about taking the data from the traditional RDBMS because they were not able to cater to the scale that we wanted to achieve, so we migrated the data from MySQL, keeping it as the primary source of truth, but for the searching mechanism and wildcard searches, we migrated to Elastic Search.

My experience with the relevancy of search results in Elastic Search includes both traditional keywords and full-text search. In the supply chain industry, with millions of orders and customers such as CMA CGM, Maersk, or Kuehne+Nagel, filtering out those orders was essential, using a shipment number, transportation order number, or an origin or destination number. In the gaming industry at FDJ United, full-text searches make more sense to understand gaming intent. For example, when a user searches for 'I really want to play action games', we break down that full-text query, use custom text analyzers, and derive the intent behind the user's query in combination with a vector database alongside Elastic Search.

My assessment of the effectiveness of hybrid search, combining vector and text searches, shows that Elastic Search is remarkable for text-based searches. I have explored other solutions, but none can beat Elastic Search in that area. When I combine hybrid searches with vector databases, they store the mathematical representation of the data. For instance, to find the top 10 closest proximity based on a query, the vector database uses cosine similarity on the available data and suggests the top 10 results while Elastic Search can keep the metadata, enabling quick access to the entire database based on derived intent.

I have utilized trusted GenAI experiences related to semantic search and text-based search in my current project using Elastic Search. My go-to solution for text-based searches will always be Elastic Search, but for semantic search, I am trying to build a solution that emphasizes system-level understanding agents. For example, if a new engineer queries the agent for a system explanation, it scans all the relevant data and provides a comprehensive analysis of the service, contextualizing inputs to reduce hallucination, controlled temperatures for the LLM model, and reducing nucleus sampling. As for knowledge preservation, I use a vector database to store significant outputs generated by the LLM, depending on user preferences regarding the gravity of the analyses performed.

What is most valuable?

The best features of Elastic Search that I appreciate include its capability for eventual consistent systems where you do not need hard consistency, and it scales very smoothly. For wildcard searches and regex patterns, it really scales massively. It offers ILM, indexation lifecycle management, which allows you to enable a search for a span of six months for the data fed into the system while moving the rest to a new cluster. The structure of the inverted index document facilitates its core features, and I find how Elastic Search understands, indexes, and creates mappings for your data to be remarkable.

What needs improvement?

While Elastic Search is a good product, I see areas for improvement, particularly regarding the misconception that any amount of data can simply be dumped into Elastic Search. When creating an index, careful consideration of data massaging is essential. Elastic Search stores mappings for various data types, which must remain below a certain threshold to maintain functionality. Users need to throttle the number of fields for searching to avoid overloading the system and ensure that the design of the document is efficient for the Elastic Search index. Additionally, I suggest utilizing ILM periodically throughout the year to manage data shuffling between clusters, preventing hotspots in the distribution of requests across nodes.

For how long have I used the solution?

I have been using Elastic Search for more than six years.

What do I think about the stability of the solution?

In terms of stability, I would rate it eight out of ten regarding downtime, bugs, and glitches.

What do I think about the scalability of the solution?

For scalability, I assign it a ten out of ten.

How are customer service and support?

I would rate Elastic Search's technical support as nine out of ten.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

Before Elastic Search, our primary source of truth was SQL databases, the traditional RDBMS.

How was the initial setup?

Estimating the return on investment from Elastic Search is nuanced; however, I can share that initially, search times from traditional RDBMS were around two to three seconds, and with Elastic Search, we reduced that to 50 milliseconds, indicating a significant improvement.

What about the implementation team?

Assessing the complexity of deploying Elastic Search, I have a gray area because a separate DevOps team handles that aspect, but from my experience writing code and utilizing its features, I find it not complex at all.

What was our ROI?

Estimating the return on investment from Elastic Search is nuanced; however, I can share that initially, search times from traditional RDBMS were around two to three seconds, and with Elastic Search, we reduced that to 50 milliseconds, indicating a significant improvement.

What's my experience with pricing, setup cost, and licensing?

On the subject of pricing, Elastic Search is very cost-efficient. You can host it on-premises, which would incur zero cost, or take it as a SaaS-based service, where the expenses remain minimal.

Which other solutions did I evaluate?

When comparing Elastic Search to other vendors and products, I have recently explored Algolia, which is also a fully managed service. Elastic Search offers a choice between hosting on-premises or as a fully managed service, which has been beneficial compared to other solutions.

In my company's relationship with the vendor, I have always worked in product-based companies using Elastic Search, often as part of solutions from companies such as Manhattan Associates and in the gaming sector. For B2B industries, they sold to large clients such as Maersk and CMA CGM while my current company, Agoda, operates in the B2C space.

What other advice do I have?

Elastic Search does require some maintenance, especially when considering features such as ILM if you want to enjoy its capabilities. Maintenance tasks depend on the established data pipeline and may introduce some friction.

Currently, we are not using Elastic streams for log ingestion; previously, we utilized the ELK and EFK stacks with Logstash for log ingestion and Kibana for visualization. I also observe a trend where companies migrate to Grafana Loki instead of ELK.

Regarding integration aspects, Elastic Search has exposed REST APIs for all its services, making it easy to integrate with third-party models or endpoints regardless of the underlying infrastructure, as any modern development language can interact with these REST services.

I have not used the attack discovery feature.

My deployment of Elastic Search is on-premises.

At Agoda, we handle over 1.2 billion searches daily, facilitated by Elastic Search.

While I have been at my current company for four months, I am still getting to know my colleagues; however, I know there is a dedicated team focused on Elastic Search. This team exposes a service that acts as an intermediary for communication between Elastic Search and other services.

In my department, there are more than 100 people, whereas the overall organization consists of thousands, exceeding 10,000.

I would rate this review overall as a nine out of ten.


    Mohammed-Abdelalim

Cloud deployment has improved reliability and now supports faster analytics and machine learning

  • January 20, 2026
  • Review provided by PeerSpot

What is most valuable?

Elastic Cloud (Elasticsearch Service) is a wonderful solution for seamless implementation and maintaining its health. It is much more reliable in the cloud than the on-premises issues that occur very frequently on-premises. However, Elastic does not cover the whole world, and in my region, the Middle East, there are very few hosting places for Elastic Cloud (Elasticsearch Service). It is good news that Elastic recently invested in hosting Elastic Cloud (Elasticsearch Service) in Saudi Arabia, set to launch in March, which I anticipate will lead to more customers adopting Elastic Cloud (Elasticsearch Service) in the very near future.

The only way to visualize data in Elastic, whether it is on-premises or in the cloud, is using Kibana. Kibana's cloud version is not different from the on-premises version, but Elastic Cloud (Elasticsearch Service) is usually more up-to-date, as Elastic maintains and consistently updates Elastic Cloud (Elasticsearch Service) to the latest version, while on-premises versions may lag behind.

I assess the machine learning capabilities of Elastic Cloud (Elasticsearch Service) as truly exceptional, although it is the least used and least understood among many customers. There are quick features that customers can benefit from, such as anomaly detection, but they can also add their own models, which some customers perceive as complex because they do not understand machine learning models and need to have data scientists on their teams to utilize that capability. If a customer uses machine learning in Elastic Cloud (Elasticsearch Service) heavily, they will find that it is very fast to get results compared to using other tools.

What needs improvement?

Machine learning might be expensive for customers. Customers take advantage of Elastic being open source, but machine learning is not available in the open source version. If a customer is using the open source version without paying licenses to Elastic, they will not enjoy the machine learning features. That is why machine learning does not have the same popularity as Kibana and the other components in Elastic, because only those who pay for Elastic can experience it.

Regarding additional features I would appreciate seeing in the next release of Elastic Cloud (Elasticsearch Service), Elastic acquired Gena AI, and I would appreciate seeing more AI models embedded in the upcoming new versions of Elastic Cloud (Elasticsearch Service). This is what I will be waiting for.

How are customer service and support?

I would rate overall Elastic technical support a seven. It is very noticeable that they are good and responsive, but they heavily collect a lot of logs from customers before resolving issues, which makes the support ticket take longer than expected.

How would you rate customer service and support?

Positive

What other advice do I have?

Some of my customers utilize Elastic Cloud (Elasticsearch Service), especially in the private sector, but most of the government sector do not use it.

Elastic Cloud (Elasticsearch Service) performs well. There are two types of Elastic Cloud (Elasticsearch Service): hosted Elastic Cloud (Elasticsearch Service) and Serverless Elastic Cloud (Elasticsearch Service). Serverless is more expensive compared to hosted Elastic Cloud (Elasticsearch Service), and controlling your bills in serverless sometimes becomes unpredictable, more often than in hosted Elastic Cloud (Elasticsearch Service). Hosted Elastic Cloud (Elasticsearch Service) is not adaptive; it does not rely on data rates, and you will know your spending from day one until the end of the year because unless you change the size of Elastic Cloud (Elasticsearch Service). As long as the size of Elastic Cloud (Elasticsearch Service) is constant, your bill is constant. With serverless, the bill changes frequently based on the influx of the data rate.

I assess Elastic Cloud (Elasticsearch Service)'s ability to handle diverse data sources such as logs and metrics as very good. Elastic managed to unify their data collection through Elastic Agent, the new version of Beats, allowing you to collect various types of data with the same agent. Elastic Cloud (Elasticsearch Service) is performing well in this area, although some data still needs to be ingested by Logstash, but Elastic Agent keeps improving over time.

My overall rating for this product is nine.


    Victor Zalevskij

Fast keyword search has improved product discovery and supports flexible query rules

  • January 14, 2026
  • Review from a verified AWS customer

What is our primary use case?

I use Elastic Search for fast search of products in our database. With Elastic Search, we use full-text search with keywords and different rules from the Elastic Search documentation. I do not have cases when a search request is four sentences long. I typically use three, four, or five words for searches.

What is most valuable?

I think the best feature of Elastic Search is the speed. It is very fast and comfortable to use in requests with transpositions rather than full requests. It has a smart engine inside.

What needs improvement?

In Elastic Search, the improvements I would like to see require many resources.

For how long have I used the solution?

I have used Elastic Search for two or three years, though I do not remember exactly which it is.

What do I think about the stability of the solution?

Maintenance of Elastic Search is easy because we do not have problems. I would rate the stability of Elastic Search at an eight.

What do I think about the scalability of the solution?

I would rate the scalability of Elastic Search at an eight.

How are customer service and support?

I did not have a situation where I needed to ask something in technical support for Elastic Search.

How would you rate customer service and support?

Positive

Which solution did I use previously and why did I switch?

I used a different solution before using Elastic Search. It was Sphinx.

How was the initial setup?

I do not know if the deployment was easy or complex, and it is also not my responsibility.

What about the implementation team?

I do not know how it was purchased as it is our DevOps responsibility. I know that it is in AWS, but I do not know the details of how it is deployed there.

Which other solutions did I evaluate?

I do not know about features such as Agentic AI, RAG, or Semantic Search in Elastic Search. I did not know that there are AI search features available.

What other advice do I have?

I would recommend Elastic Search to other people who want to have fast search in their applications. It is comfortable, it is fast, and it is very interesting to work with it. I gave this product a rating of eight out of ten.


    MichaelMartin1

Unified observability has simplified troubleshooting and improved monitoring across environments

  • January 12, 2026
  • Review provided by PeerSpot

What is our primary use case?

I work in a gaming company where we handle a lot of microservices, observability, monitoring, and metrics. We aggregate all our logs to Elastic Search for troubleshooting across different environments including production, staging, and dev. We use Elastic Search to give us insights and to conduct a lot of troubleshooting.

We decided to go with Elastic Search because of the ability to aggregate everything into one portal where we have access to our entire infrastructure and the correlation about observability and traces. I have used competitors, but we are not using them in the production environment; perhaps on lower environments, but for production, we use Elastic Search.

What is most valuable?

One thing I appreciate about Elastic Search is the ability to aggregate everything into one dashboard, so I can have monitoring, logs, and traces in one portal instead of having multiple different tools to do the same.

Normally, if you were to use Prometheus, you need to know the Prometheus query language, but with Elastic Search, it gives us the ability to use normal human language for queries. It is very intelligent when it comes to querying. Unless you want to search something in depth, I find it very user-friendly.

I think hybrid search, which combines vector and text searches, is very effective because a developer or platform engineer does not need to spend time learning how to do a query. They can log in and use the standard query language to query a specific log, for example.

The initial deployment of Elastic Search was very easy for our instance because we just needed to enable some annotations for it to start getting the logs. We only needed to do a very minimal deployment on our side. The advantage we had is we had already deployed templates, so we did not need to configure each and every microservice. Once Elastic Search was there and we were able to push the annotations to our deployment, everything came alive.

What needs improvement?

I think the biggest issue we had with Elastic Search was regarding integrations with our multi-factor authentication tool. We had a challenge with the types of protocols that it allows. Sometimes you find it only supports one or two, and maybe we have a third-party tool for our MFA, so we are limited in how we can do integrations and in terms of audit. Since we are in an environment where we need to be compliant and have all our audits done, it is very hard to audit access logs for Elastic Search. I do not know if that has changed; perhaps we are still on an older version, but that has been the major issue we have experienced.

When it comes to updates for Elastic Search, we might need to push updates, for example, when they have a security patch that we need to enhance or add into our deployments. We do this in the lower environments for staging and then promote it into production. There is not much ongoing maintenance that requires any sort of downtime.

What do I think about the stability of the solution?

Elastic Search gives you quotas, so you are able to monitor your quotas and know when you are about to fill them up and maybe expand or tighten on your logs. Internally, we try not to have alert fatigue, so we only do important logs and queries, and we rarely have any sort of lag.

What do I think about the scalability of the solution?

Elastic Search is very flexible when it comes to scalability. Being on the enterprise license, it is not really a big issue for us because we can increase the number of quotas we need depending on the logs we want.

How are customer service and support?

For Elastic Search, we have never contacted any support. I appreciate the way they do their documentation and blogs. As a technical professional, before I reach out to support, I have to do my own troubleshooting and research; unless it is something that I cannot resolve, that is when I will probably raise a ticket. In the recent past, we have not raised any specific ticket for Elastic Search.

How would you rate customer service and support?

Which solution did I use previously and why did I switch?

Before we migrated to Elastic Search, we were using the open-source tools Grafana and Prometheus for logs, but we had to have another third-party tool to do tracing such as Jaeger, or have Sentry to do database logs.

How was the initial setup?

The initial deployment of Elastic Search was very easy for our instance because we just needed to enable some annotations for it to start getting the logs. We only needed to do a very minimal deployment on our side. The advantage we had is we had already deployed templates, so we did not need to configure each and every microservice. Once Elastic Search was there and we were able to push the annotations to our deployment, everything came alive.

What about the implementation team?

The deployment of Elastic Search was done by our DevOps team, because I am part of the DevOps team. Our technical lead was mostly involved in terms of authentications and API key setup. From my side, it was easy for me to enable the annotations on the deployment and commit into the repository and push the changes to it. It was a team effort at different levels.

What other advice do I have?

I would give Elastic Search probably an eight because there is always room for improvement. In IT, everything keeps evolving, and AI is here, and probably tomorrow something else will come, so they will need to elevate their game. I give it a general rating of eight, which for me means it is working perfectly, but it can always get better; there is always something to improve. My overall review rating for Elastic Search is eight out of ten.


    Dilip Kumar Bondugula

Centralized log monitoring has improved threat detection and simplified alert handling workflows

  • January 09, 2026
  • Review provided by PeerSpot

What is our primary use case?

Our use case is mainly for monitoring purposes, as we are getting the logs from our Linux machines where the applications are installed. Then we are forwarding these logs from the Linux servers to Elastic Search.

For now, we are logging the logs into the dashboard, and whenever a user wants to search on the logs, we use the platform directly on Elastic Search. I don't think we use full keywords; we directly use the user interface in the Elastic Search dashboard. Mainly, I think that should be sufficient for our users.

We don't use elastic streams for log ingestion or for structuring raw logs without agents.

We use the attack discovery feature to create alerts.

What is most valuable?

The best feature of Elastic Search that I appreciate is its monitoring capability. Whatever logs you want to forward to Elastic Search are pretty clear, and you can even edit the logs if you want some logs to delete or some logs not to appear in the monitoring dashboard, so you can clear it from there. It's pretty easy to install, easy to get handy on Elastic Search, and also easy to use it in the project. I think that's the main advantage of Elastic Search.

From a security point of view, I find Elastic Search to be quite secure, as we have a separate cluster that is well secured, and not just anyone can enter it easily.

I've noticed that the logs we are getting from the Linux servers have become automated, and in the long term, I believe Elastic Search will give promising results. When compared to Prometheus and Grafana, Elastic Search plays a main role in injecting SQL-related logs as it can inject any type of logs. It can show us any type of logs, which will be very helpful for any company or organization.

We forward the logs to our internal system that has an internal alerting system maintained by ING. The person monitoring Elastic Search, for instance, an ops guy this week or next week, will take care of the alert and try to fix it, making it quite handy to use this feature.

What needs improvement?

I think the first area for improvement is pricing, as the cluster cost for Elastic Search is too high for me. When I compare it with Prometheus or Grafana, we get very cheap dashboards with them. Elastic clusters are very costly; I understand the capabilities it has, but the price should be reduced a little bit in the market.

I also think the indexing throughput should be reduced, as using the bulk API in Elastic Search takes a lot of time and should become very fast. Additionally, observability features like search latency, indexing rate, and maybe rejected requests should be added to make the platform more reliable and accessible for everyone.

For how long have I used the solution?

I have been using Elastic Search for close to two years in my current project.

What do I think about the stability of the solution?

As far as I have been using it for two years, I did not find any glitches or bugs, so I would rate it an eight or nine.

How would you rate stability?

Positive

What do I think about the scalability of the solution?

When it comes to scalability, it is scalable, but the pricing also matters, so I would rate it six or seven.

How would you rate scalability?

Positive

How are customer service and support?

I would rate their technical support a nine because they are pretty reachable every time.

How would you rate customer service and support?

Positive

How was the initial setup?

The deployment was easy for us.

What about the implementation team?

We wrote some Ansible scripts, and it took maybe two weeks, a couple of weeks.

What other advice do I have?

I don't think the hybrid search that combines vectors and text searches will be in my use case.

Currently, we are not using any of the trusted GenAI experience features such as Agentic AI, RAG, or semantic search.

I recommend Elastic Search to other people because it's quite reliable when used in a project. Every project can incorporate Elastic Search because it has a lot of features. The only concern I have is pricing; other than that, the features are very good. Everyone will be able to use it easily, but you need to keep in mind that you have to train some resources because there are not many people experienced with Elastic Search. You should provide some training to them before deploying them onto the project. I would rate this review an eight overall.


    Shreyas V.

Lightning-Fast Log Searches and Reliable High Availability

  • January 06, 2026
  • Review provided by G2

What do you like best about the product?
I am able to retrieve search results for specific API transaction IDs almost instantly, even when working with our extensive log datasets. Leveraging advanced aggregations and Kibana dashboards, I depend on the platform's built-in high availability, which uses automated sharding and replicas, to keep my logs both accessible and secure.
What do you dislike about the product?
I find it quite challenging to deal with the high memory consumption and the mapping conflicts.
What problems is the product solving and how is that benefiting you?
Elasticsearch allows me to search through millions of API logs within seconds, making it easy to quickly identify and resolve errors. Additionally, it consolidates data from all my services into a single dashboard, which helps me monitor the system's health and manage storage costs more effectively.


    Ziv K.

Effortless Integration and Powerful Text Search

  • December 20, 2025
  • Review provided by G2

What do you like best about the product?
What stands out to me is how easy it is to integrate, along with its impressive capabilities for text search. Additionally, I appreciate the flexibility it offers when it comes to working with the schema.
What do you dislike about the product?
This isn't always the primary database, so running two databases in production can be a hassle, especially when it comes to keeping them in sync.
What problems is the product solving and how is that benefiting you?
The text search feature is quite complex, but integrating it with an agent skill is straightforward.


    Maximilien D.

Elasticsearch has been a great database since the start of my business

  • December 19, 2025
  • Review provided by G2

What do you like best about the product?
With Elastic Cloud, I am able to perform ultra-complex text queries and integrate with APIs, all while benefiting from scalability and easy maintenance.
What do you dislike about the product?
The cost feels rather steep when you take into account how few gigabytes are included.
What problems is the product solving and how is that benefiting you?
The platform can handle large volumes of textual data and allows for queries to be executed within just a few milliseconds.


    MichaelSmith9

Unified search has powered feature‑driven research with minimal maintenance overhead

  • December 16, 2025
  • Review provided by PeerSpot

What is our primary use case?

We utilize Elastic Search to bring a bunch of data sources together into a large search corpus, which is used to power our core research platform.

We don't generally do a lot of full-text search with Elastic Search. We do a lot of keyword-based searching and a lot of faceted search, and it works really well. We've also had to build custom relevance algorithms based on data that's being stored in the search index. This is more about the algorithm being less about text matching and more about feature matching and relevance on a number of different scales. It's generally worked out really well.

What is most valuable?

The best feature of Elastic Search is it does exactly what it says. It's really easy to get set up and running and have search running very quickly with basic, out-of-the-box features. It scales very well, and we can do a whole lot with the core feature set before having to move to more advanced concepts. Even then, it performs very well, whether we need to expand into vector databases or decide that the Elastic Search Query DSL doesn't solve our needs anymore and have to go with ESQL or something. It expands and scales really well.

The hosted solution means Elastic Search takes care of the maintenance, which is one of the reasons we chose it. There's been very little maintenance from a data perspective on our side. As we make changes to our database structure, we've had to mirror them into Elastic Search.

What needs improvement?

We haven't had the opportunity to use the hybrid search with Elastic Search yet. I think there's a place for it in our long-term solution, but we're not quite there yet.

We haven't yet used any AI features built into Elastic Search.

To do what we want to do with Elastic Search, the queries can get complex and require a fuller understanding of the DSL. Once we start to build that understanding, it's another muscle we have, so it's not a bad thing, but it just takes a while to get up and running with expertise for our engineers.

It's not hard to learn how to use more complex things in Elastic Search; it's just a challenge we're going to face.

For how long have I used the solution?

In my career, I've been using Elastic Search for three or four companies, probably on and off for 10 years.

What do I think about the stability of the solution?

We've had various very small blips with Elastic Search, but it's never been an issue that was concerning. We have limited infrastructure, so we could go further in terms of our hosted deployment to ensure that some of those things didn't happen. We've simply accepted the level of risk we have.

What do I think about the scalability of the solution?

Thus far, everything seems really good in terms of scalability for Elastic Search. We don't have the largest data set in the world; we have millions of records, single-digit millions, so two or three million records. I feel confident knowing that we could times that by 10 or 100, maybe, and it would still work. The cost would obviously scale, the number of nodes would scale, but Elastic Search would be able to handle that level of scale.

Which solution did I use previously and why did I switch?

Before I was using Elastic Search and actually before Elastic Search even existed, I previously used Apache Solr and Lucene in my career. The release of Elastic Search way back when was a boon because it was out of the box and did what it said. We've also worked with Pinecone, Amazon's OpenSearch, and essentially Postgres trying to do vector search in Postgres. All of those tools have their place, but if we're doing straight search, Elastic Search is just really the right answer.

How was the initial setup?

The initial deployment of Elastic Search was really straightforward because we used the hosted solution.

We had Elastic Search live and our first initial searches running in our staging environment within a week. We moved into production with our full data set within six weeks.

What about the implementation team?

We had one engineer working on this implementation. That's why it took six weeks.

What's my experience with pricing, setup cost, and licensing?

Elastic Search's pricing is affordable when using the hosted solution through Elastic Search. The pay-as-you-go monthly approach has been nice, and if we scale as a company grows, we'll probably switch to a prepaid model, which will be an even bigger benefit. Having the hosted solution and not having to pay for essentially a DevOps person on staff to manage makes it affordable. We haven't really looked into serverless, which has its own benefits. I think serverless still had some challenges early on, and I wanted to go with something I had previously worked with. The hosted solution pricing fits, but the pricing for serverless also looks really interesting. The self-managed solution is nice from a pricing perspective, but we need the right staff to support it, and we don't have that staff.

Which other solutions did I evaluate?

We don't use Elastic Search for log ingestion, though I think they have a feature for this.

We haven't worked with anything in terms of Elastic Search integration process for third-party models with interference endpoints.

I'm not using the Attack Discovery feature because we're not using Elastic Search for our observability approach.

What other advice do I have?

We have no partnerships or anything with Elastic Search. I would rate this review as a 9.