AI คืออะไร
AI หรือที่เรียกอีกอย่างว่า ปัญญาประดิษฐ์ เป็นเทคโนโลยีที่มีความสามารถในการแก้ปัญหาเหมือนมนุษย์ การทำงานของ AI ดูเหมือนจะจำลองความฉลาดของมนุษย์ โดยสามารถจดจำภาพ เขียนบทกวี และคาดการณ์ตามข้อมูลได้
องค์กรสมัยใหม่รวบรวมข้อมูลจำนวนมากจากแหล่งที่มาหลากหลาย เช่น เซ็นเซอร์อัจฉริยะ เนื้อหาที่มนุษย์สร้างขึ้น เครื่องมือตรวจสอบ และข้อมูลบันทึกระบบต่าง ๆ เทคโนโลยีปัญญาประดิษฐ์วิเคราะห์ข้อมูลและใช้การวิเคราะห์นั้นเพื่อช่วยในการดำเนินธุรกิจอย่างมีประสิทธิผล ตัวอย่างเช่น เทคโนโลยี AI สามารถตอบสนองต่อการสนทนาของมนุษย์ในการสนับสนุนลูกค้า สร้างภาพและข้อความต้นฉบับสำหรับการตลาด และให้คำแนะนำอย่างชาญฉลาดสำหรับการวิเคราะห์
ท้ายที่สุด ปัญญาประดิษฐ์คือการทำให้ซอฟต์แวร์ฉลาดขึ้นสำหรับการโต้ตอบกับผู้ใช้ที่กำหนดเองและการแก้ปัญหาที่ซับซ้อน
เทคโนโลยี AI มีประเภทใดบ้าง
ในช่วงไม่กี่ปีที่ผ่านมามีแอปและเทคโนโลยี AI เพิ่มขึ้นอย่างมาก คุณสามารถดูตัวอย่างเทคโนโลยี AI ที่พบเจอบ่อยได้ด้านล่างนี้
ประวัติของ AI
ในเอกสารของ Alan Turing จากปี ค.ศ. 1950 เรื่อง "Computing Machinery and Intelligence" เขาพิจารณาว่าเครื่องจักรสามารถคิดเองได้หรือไม่ ในบทความนี้ Turing ได้บัญญัติคำว่าปัญญาประดิษฐ์ขึ้นเป็นครั้งแรก และนำเสนอเป็นแนวคิดทางทฤษฎีและปรัชญา อย่างไรก็ตาม AI อย่างที่เราทราบในปัจจุบันเป็นผลมาจากความพยายามร่วมของนักวิทยาศาสตร์และวิศวกรจำนวนมากในช่วงหลายทศวรรษ
1940-1980
ในปี 1943 Warren McCulloch และ Walter Pittsได้เสนอแบบจำลองของเซลล์ประสาทเทียม โดยวางรากฐานสำหรับนิวรัลเน็ตเวิร์กซึ่งเป็นเทคโนโลยีหลักภายใน AI
ตามมาอย่างรวดเร็ว ในปี 1950, Alan Turing ได้ตีพิมพ์เรื่อง “เครื่องจักรคอมพิวเตอร์และระบบอัจฉริยะ” แนะนำแนวคิดของการทดสอบ Turing เพื่อประเมินความฉลาดของเครื่อง
สิ่งนี้ทำให้นักศึกษาระดับบัณฑิตศึกษา Marvin Minsky และ Dean Edmonds สร้างเครื่องนิวรัลเน็ตเวิร์กตัวแรกที่รู้จักกันในชื่อ SNARC โดย Frank Rosenblatt พัฒนา Perceptron ซึ่งเป็นหนึ่งในโมเดลแรก ๆ ของนิวรัลเน็ตเวิร์ก และ Joseph Weizenbaum สร้าง ELIZA ซึ่งเป็นหนึ่งในแชทบอทแรกที่จำลองนักจิตบำบัดโรเจเรียระหว่างปี ค.ศ. 1951 ถึง 1969
ตั้งแต่ปี ค.ศ. 1969 จนถึง 1979 Marvin Minsky แสดงให้เห็นถึงข้อจำกัดของนิวรัลเน็ตเวิร์กซึ่งทำให้การวิจัยนิวรัลเน็ตเวิร์กลดลงชั่วคราว “ฤดูหนาว AI” ครั้งแรกเกิดขึ้นเนื่องจากการระดมทุนและข้อจำกัดด้านฮาร์ดแวร์และการคำนวณที่ลดน้อยลง
1980-2006
ในทศวรรษที่ 1980 มีความสนใจใหม่และการระดมทุนจากรัฐบาลสำหรับการวิจัย AI เป็นหลักในการแปลและการถอดรหัสในช่วงเวลานี้ ระบบผู้เชี่ยวชาญ เช่น MYCIN กลายเป็นที่นิยมเนื่องจากจำลองกระบวนการตัดสินใจของมนุษย์ในโดเมนเฉพาะ เช่น ยา ด้วยการฟื้นฟูนิวรัลเน็ตเวิร์กในปี ค.ศ. 1980 David Rumelhart และ John Hopfield ตีพิมพ์บทความเกี่ยวกับเทคนิคดีปเลิร์นนิง ซึ่งแสดงให้เห็นว่าคอมพิวเตอร์สามารถเรียนรู้จากประสบการณ์ได้
ตั้งแต่ปี ค.ศ. 1987-1997 เนื่องจากปัจจัยทางภาวะเศรษฐกิจสังคมอื่น ๆ และสภาวะฟองสบู่ดอทคอม ทำให้เกิดช่วงฤดูหนาวของ AI ครั้งที่สอง การวิจัย AI กลายเป็นชิ้นส่วนที่ไม่สมบูรณ์มากขึ้น พร้อมกับทีมงานแก้ปัญหาเฉพาะโดเมนในกรณีการใช้งานที่แตกต่างกัน
ตั้งแต่ปี ค.ศ. 1997 ถึงประมาณปี ค.ศ. 2006 เราได้เห็นความสำเร็จที่สำคัญใน AI รวมถึงซอฟต์แวร์หมากรุก Deep Blue ของ IBM เอาชนะแชมป์หมากรุกโลก Garry Kasparov นอกจากนี้ Judea Pearl ยังได้ตีพิมพ์หนังสือที่รวมความน่าจะเป็นและทฤษฎีการตัดสินใจในการวิจัย AI และ Geoffrey Hinton และคนอื่น ๆ ก็มีชื่อเสียงในด้านดีปเลิร์นนิง ซึ่งนำไปสู่การฟื้นตัวของนิวรัลเน็ตเวิร์ก อย่างไรก็ตามผลประโยชน์เชิงพาณิชย์ยังคงมีจำกัด
2007-ปัจจุบัน
ตั้งแต่ปี ค.ศ. 2007 ถึง 2018 ความก้าวหน้าในการประมวลผลบนคลาวด์ทำให้เข้าถึงพลังการประมวลผลและโครงสร้างพื้นฐาน AI ได้มากขึ้น ซึ่งนำไปสู่การนำไปใช้ นวัตกรรม และความก้าวหน้าในแมชชีนเลิร์นนิงที่เพิ่มขึ้น ความก้าวหน้ารวมถึงสถาปัตยกรรมนิวรัลเน็ตเวิร์กแบบสังวัตนาการ (CNN) ที่เรียกว่า AlexNet ซึ่งพัฒนาโดย Alex Krizhevsky, Ilya Sutskever และ Geoffrey Hinton ชนะการแข่งขัน ImageNet ซึ่งแสดงให้เห็นถึงพลังของดีปเลิร์นนิงในการจดจำภาพ และ AlphaZero ของ Google เชี่ยวชาญในเกมหมากรุก โชกิ และหมากล้อมที่อาศัยการเล่นด้วยตนเองโดยไม่มีข้อมูลของมนุษย์
ในปี 2022 แชทบอทที่ใช้ปัญญาประดิษฐ์ (AI) และการประมวลผลภาษาธรรมชาติ (NLP) เพื่อสนทนาเหมือนมนุษย์และทำงานให้เสร็จสมบูรณ์ เช่น ChatGPT ของ OpenAI กลายเป็นที่รู้จักกันอย่างกว้างขวางในด้านความสามารถในการสนทนา ทำให้เกิดความสนใจและการพัฒนา AI
AI ในอนาคต
เทคโนโลยีปัญญาประดิษฐ์ในปัจจุบันทั้งหมดทำงานภายในชุดของพารามิเตอร์ที่กำหนดไว้ล่วงหน้า ตัวอย่างเช่น โมเดล AI ที่ได้รับการฝึกให้จดจำภาพและสร้างภาพ จะไม่สามารถสร้างเว็บไซต์ได้
ปัญญาประดิษฐ์ทั่วไป (AGI) เป็นสาขาหนึ่งของการวิจัย AI ตามทฤษฎีที่พยายามสร้างซอฟต์แวร์ที่มีปัญญาคล้ายมนุษย์และความสามารถในการสอนตนเอง เป้าหมายคือให้ซอฟต์แวร์ทำงานที่ไม่จำเป็นต้องผ่านการฝึกหรือพัฒนาได้
AGI เป็นการแสวงหาทางทฤษฎีเพื่อพัฒนาระบบ AI ด้วยการควบคุมตนเองแบบอัตโนมัติ การเข้าใจตนเองอย่างสมเหตุสมผล และความสามารถในการเรียนรู้ทักษะใหม่ๆ สามารถแก้ปัญหาที่ซับซ้อนในการตั้งค่าและบริบทที่ไม่ได้สอนเมื่อสร้างขึ้น AGI ที่มีความสามารถของมนุษย์จะยังคงเป็นแนวคิดทางทฤษฎีและเป้าหมายการวิจัยต่อไป ซึ่งคือหนึ่งในความเป็นไปได้ของอนาคตของ AI