亚马逊AWS官方博客

Tag: AWS Glue

使用 Step Functions 编排从数据库到数据仓库的数据ETL

数据仓库是信息的中央存储库。业务分析师、数据工程师、数据科学家和决策者通过商业智能 (BI) 工具、SQL 客户端和其他分析应用程序访问数据。数据和分析已然成为各大企业保持竞争力所不可或缺的部分。企业用户依靠报告、控制面板和分析工具从其数据中获得洞察力、监控企业绩效以及更明智地决策。

Amazon Glue ETL作业调度工具选型初探

Amazon Glue是一项完全托管,无服务器架构的ETL服务。客户无需预置基础设置,只需要专注开发ETL代码,并且使用Amazon Glue时,只需为ETL作业运行时间付费。 在迁移现有ETL任务到Glue的过程中,有可能面临编排选型的问题。本文就编排选型,如何实现自动化迁移工作流,减少开发人员适配工作上做一定的探索。

在 AWS Glue 的 Python Shell 作业中部署 AWS Data Wrangler 进行 ETL 数据处理

本文首先介绍了AWS Glue以及该服务的功能和使用场景,然后介绍了AWS Glue 中的Python Shell作业,可以基于Python完成一些基础的ETL操作。接下来,我们又介绍了Pandas on AWS – AWS Data Wrangler这款在AWS上进行数据分析的利器,并通过一个示例场景(CSV转换Parquet)来介绍了如何在Python Shell作业引入AWS Data Wrangler来简化在AWS平台上的无服务器化的ETL任务。

在 AWS 上构建云原生机器学习流水线

近两年,机器学习已经渗透到各行各业,各种人工智能和机器学习的应用蓬勃发展,在其背后实际上会有一个完善的机器学习平台和流水线来支撑模型的开发、测试和迭代。但是这样一个系统性的平台,往往需要通过整合基础架构层和平台层来完成。在本篇Blog中,我们将展现如果通过AWS的服务构建云原生的机器学习流水线。