Amazon Web Services ブログ

Category: Generative AI

Advanced RAG Architecture

Amazon Kendra と Amazon Bedrock で構成した RAG システムに対する Advanced RAG 手法の精度寄与検証

Advanced RAG の枠組みでは、検索前処理 (pre-retrieval) と検索後処理 (post-retrieval) としてさまざまな工夫が考案されています。検索前処理では、インデックス構造の最適化やクエリの改善を行います。検索後処理では、検索結果のランク付けや情報の圧縮を行い、大規模言語モデル (LLM) への入力を最適化します。これにより、よりコンパクトで的確な追加情報を LLM に提供し、応答品質の向上を図ります。本記事では Advanced RAG に分類される手法のうち、特に LLM を用いたクエリ拡張 (query expansion) と、検索結果の関連度評価という手法による回答品質への影響を簡易的に評価した結果を紹介します。

Knowledge Bases for Amazon Bedrock がハイブリッド検索をサポート

AWS re:Invent 2023 にて、Knowledge Bases for Amazon Bedrock の一般提供を発表しました。Knowledge Bases for Amazon Bedrock を使えば、Amazon Bedrock の基盤モデル (Foundation Model; FM) に自社のデータをセキュアに接続し、Retrieval Augmented Generation (RAG) をマネージドで実現できます。
この記事では、セマンティック検索に加えてオプションとして選択可能な新機能のハイブリッド検索について説明します。

生成 AI をセキュアにする: データ、コンプライアンス、プライバシーに関する考慮点

このブログは、生成 AI をセキュアにするシリーズの続きで、生成 AI ワークロードのデプロイと構築における規制、プライバシー、コンプライアンスの課題に関するガイダンスを提供します。

Amazon Bedrock と AWS Control Tower による AWS アカウント管理のモダナイズ

クラウドガバナンスに生成 AI を組み込むことで、AWS アカウントの管理をより自動化された効率的なプロセスに変えることができます。Amazon Bedrock の生成 AI 機能と、AWS Control Tower や Account Factory for Terraform (AFT) などのツールを活用することで、お客様は AWS アカウントのセットアップと管理プロセスを迅速化し、ベストプラクティスを守りながら開発工数を最小限に抑えることができます。