Amazon Web Services ブログ

Category: *Post Types

Amazon Bedrock アプリケーションで責任ある AI のコアディメンションに対応するための考慮事項

AWS では、Amazon Bedrock ガードレールのような目的に特化したサービスや機能を使い始めるためのツール、ガイダンス、リソースを提供することで、お客様が責任ある AI を理論から実践へと変換できるよう支援しています。本ブログでは、責任ある AI のコアディメンションを紹介し、Amazon Bedrock アプリケーションでこれらのディメンションに対処するための考慮事項と戦略を探ります。

責任ある AI に関する新しいツール、機能、リソースにより AI の信頼を促進する

信頼が AI 導入の礎となる中、私たちは AWS re:Invent 2024 で責任ある AI に関する新しいツール、機能、リソースの発表をお知らせします。これらは、私たちの AI サービスとモデルの安全性、セキュリティ、透明性を向上させ、お客様自身の責任ある AI の取り組みをサポートします。

Amazon SageMaker Canvas で製造データの異常を検出

Amazon SageMaker Canvas は、領域の専門家にノーコードインターフェースを提供することで、製造業のジレンマを解決します。データサイエンスの経験が十分になくても、予測、分類、回帰モデルなどの強力な分析や、ML モデルを作成できます。また、作成後、モデルを ML および MLOps 専門家に展開して共有することもできます。この記事では、SageMaker Canvas を使用して、必要な特徴量をデータから選択し、整理する方法を説明します。また、SageMaker Canvas のノーコード機能を使用したモデルチューニングの機能を使って、異常検出のための予測モデルをトレーニングする方法を紹介します。

生成 AI アプリケーションで使用するデータを保護するための効果的なデータ認可メカニズムの実装

本ブログでは、生成 AI ワークロードにおけるデータセキュリティとデータ認可について詳しく説明します。基盤モデルのファインチューニングや RAG 、AI エージェントなどの観点から機密データ利用時のリスクを分析し、さらに生成 AI アプリケーションや Amazon Bedrock Agents でのデータ認可メカニズムの実装方法を解説します。

追加学習なしの zero-shot で高精度な時系列予測 : Chronos-Bolt を AutoGluon で利用する

Chronos-Bolt は AutoGluon-TimeSeries の最新追加機能であり、元の Chronos モデルと比較して最大 250 倍高速に追加学習なしで高精度な予測を実現します。Chronos のような基盤モデルは、さまざまなドメインの時系列データを利用して単一のモデルを学習させるというアイデアをさらに大きく前進させました。これらのモデルは、膨大な時系列データで事前学習されています。学習データには実際のデータと合成データが含まれ、様々な分野、頻度、時系列の長さをカバーしています。その結果、追加学習なしの予測が可能となり、未知の時系列データセットに対しても正確な予測を提供します。時系列予測に取り組むハードルが低くなり、追加の学習なしで正確な予測が可能になるため、予測プロセス全体が大幅に簡素化されます。