亚马逊AWS官方博客

AWS Team

Author: AWS Team

从本地存储架构迁移到 AWS 存储服务

无论用户需要从零开始进行迁移或需要把突发工作负载迁移至云端,AWS提供了能在这一过程的每个环节提供帮助的服务。在从本地存储环境迁移至云端解决方案后,组织将变得更敏捷,更具创新性。将本地数据存储迁移至AWS存储服务还可能帮助组织改善可扩展性与安全性,并降低基础结构成本。

Read More

使用 TensorBoard 实现 TensorFlow 训练作业可视化

在本文中,展示了使用TensorBoard可视化TensorFlow训练作业,以Amazon S3作为日志存储。您可以使用这套解决方案以及对应的示例notebook,通过Amazon SageMaker构建和训练模型,并运行超参数调优作业。此外,您可以使用TensorBoard对不同训练作业中的超参数进行比较,生成并显示分类器混淆矩阵,剖析并可视化训练作业的性能。

Read More

使用 Amazon SageMaker Processing 与 AWS Step Functions 构建机器学习工作流

机器学习(ML)工作流负责编排并自动执行机器学习任务序列,包括数据收集,机器学习模型的训练、测试与评估,外加模型部署。AWS Step Functions能够在端到端工作流中编排并自动执行与 Amazon SageMaker相关的各项机器学习任务。AWS Step Functions数据科学软件开发工具包( AWS Step Functions Data Science Software Development Kit,简称SDK)是一套开源库,使您得以轻松创建包含数据预处理、模型训练和部署的工作流。您可以使用Python创建机器学习工作流,而无需分别设置及整合各项AWS服务。

Read More

使用 A/B 测试衡量 Amazon Personalize 推荐结果的有效性

A/B测试还能够提供客户与Amazon Personalize推荐结果间实际交互方式的宝贵信息。这些结果将根据明确定义的业务指标进行衡量,使您了解推荐结果的有效性,以及该如何进一步调整训练数据集建立起明确认知。在对此过程进行多轮迭代之后,您会发现各项重要指标都将得到改善,客户参与度也将随之提高。

Read More

在 Amazon SageMaker Autopilot 推理管道中部署您的自有数据处理代码

在本文中,我们演示了如何使用您自己的数据处理代码构建起自定义Autopilot推理管道。我们首先训练出特征选择模型,而后使用经过训练的特征选择模型对原始数据进行转换。接下来,我们启动Amazon SageMaker Autopilot作业,针对我们的回归问题自动训练并优化出最佳机器学习模型。我们还构建起一套将特征选择与Autopilot模型加以结合的推理管道。

Read More

加快创新步伐:F1 如何运用 AWS 上的无服务器机器学习提升洞见能力

2020年,F1方程式赛车迎来了自己的70岁生日,同时也是世界上将运动技能与工程技术实力全面结合的极少数顶尖运动之一。技术一直在F1中扮演着核心角色,规则与工具的演变也早已融入F1运动的血液当中。正是这种不断进取、不断探索的精神,令全球赛车迷们痴狂不已,关注自己热爱的车手与车队如何以十分之一秒为单位超越对手、夺取胜利。

Read More