Amazon Web Services ブログ

Category: Amazon SageMaker Canvas

Amazon SageMaker Canvas でノーコード機械学習を行うために Google Cloud Platform BigQuery からデータをインポートする

現代のクラウド中心のビジネス環境では、データが複数のクラウドやオンプレミスのシステムに分散していることが多くあります。この断片化は、お客様が機械学習 (ML) イニシアチブとして、データを統合し、分析する作業を複雑にしています。

本稿では、さまざまなクラウド環境の中でも Google Cloud Platform (GCP) BigQueryに焦点を当て、データソースを移動することなく、データを直接抽出するアプローチをご紹介します。これにより、クラウド環境間でデータ移動の際に発生する複雑さとオーバーヘッドを最小限に抑えることができるため、組織は ML プロジェクトで様々なデータ資産にアクセスし、活用できるようになります。

自動シャットダウンソリューションを使ってAmazon SageMaker Canvas のコストを最適化する方法

この投稿では SageMaker Canvas アプリケーションのコストをより最適化する新しい方法を紹介します。 SageMaker Canvas は現在、アプリの使用状況とアイドル時間に関するインサイトを提供する Amazon CloudWatch Metrics を収集しています。 お客様はこの情報を使用して、意図しないコストの発生を避けるために自動的にアイドル状態の SageMaker Canvas アプリケーションをシャットダウンできます。