Amazon Web Services 한국 블로그

Category: Launch

AWS Database Migration Service 완전 관리형 스키마 변환 서비스 출시

2016년에 AWS Database Migration Service(AWS DMS)를 출시한 이후, 고객은 가동 중지 시간을 최소화하면서 800,000개 이상의 데이터베이스를 AWS로 안전하게 마이그레이션했습니다. AWS DMS는 Oracle에서 Amazon Aurora MySQL로, MySQL에서 Amazon Relational Database(Amazon RDS) MySQL로, Microsoft SQL Server에서 Amazon Aurora PostgreSQL로, MongoDB에서 Amazon DocumentDB로, Oracle에서 Amazon Redshift로, 그리고 Amazon Simple Storage Service(S3)로 또는 그 반대로 등 20개 이상의 데이터베이스와 […]

Amazon Redshift 업데이트 – S3 자동 복사, Aurora Zero-ETL, 멀티 AZ 지원, 동적 데이터 마스킹 등

고객과 이야기를 나누다 보면 고객이 데이터에서 얻은 인사이트를 활용하여 시기 적절하고 영향력 있고 실행 가능한 비즈니스 결정을 내릴 수 있기를 원한다는 것을 알 수 있습니다. 데이터 기반 조직의 일반적인 패턴은 분석 시스템에 수집해야 하는 데이터 소스가 다양하다는 것입니다. 이를 위해서는 운영 데이터베이스, 데이터 레이크, 스트리밍 데이터 및 웨어하우스 내 데이터를 아우르는 수동 데이터 파이프라인을 구축해야 […]

AWS Glue Data Quality 미리보기 – 규칙 기반 자동 데이터 품질 기능 출시

1980년에 저는 두 번째 전문 프로그래밍 일을 하면서 미국 여러 주의 운전면허증 데이터를 분석하는 프로젝트를 진행하고 있었습니다. 당시 해당 유형의 데이터는 일반적으로 고정 길이 레코드에 저장되었으며 값은 각 필드에 신중하게(또는 인코딩되지 않은) 인코딩되었습니다. 데이터에 대한 스키마가 주어졌음에도 불구하고, 항상 개발자들이 미리 예상하지 못한 값을 나타내기 위해 트릭에 의존해야 한다는 것을 알게 되었습니다. 예를 들어, 서로 […]

Amazon Athena – Apache Spark 지원 기능 정식 출시

2016년 Jeff Barr가 Amazon Athena를 처음 발표했을 때, 데이터와의 상호 작용에 대한 제 관점이 바뀌었습니다. Amazon Athena를 사용하면 Athena에서 테이블 생성, 커넥터를 사용하는 데이터 로드, ANSI SQL 표준을 사용하는 쿼리부터 시작하여 몇 단계만 거치면 데이터와 상호 작용할 수 있습니다. 시간이 지남에 따라 금융 서비스, 의료 및 소매업과 같은 다양한 산업에서는 다양한 형식과 크기의 데이터에 대해 […]

AWS Application Composer 미리보기 – 서버리스 워크로드 시각화 생성 도구

오늘 여러 AWS 서비스에서 서버리스 애플리케이션을 구축하는 데 사용할 수 있는 비주얼 디자이너인 AWS Application Composer 미리보기를 출시합니다. 일반적인 분산 시스템에서 각 팀별 권한 부여는 개발자가 비즈니스 기능을 코드로 변환하는 데 도움이 되도록 하는 데 필요한 문화적 변화입니다. 이것은 모든 팀이 독립적으로 작업한다는 의미는 아닙니다. 서로 다른 팀 또는 신규 참여자도 프로젝트에 기여하기 위해 무엇을 […]

Amazon SageMaker JumpStart – 기업 내에서 ML 모델 및 노트북 공유 기능 출시

Amazon SageMaker JumpStart는 ML 여정을 가속화하는 데 도움이 되는 기계 학습(ML) 허브입니다. SageMaker JumpStart를 사용하면 인기 모델 허브의 사전 학습된 모델, 기사 요약 및 이미지 생성과 같은 작업을 수행하는 데 도움이 되는 사전 학습된 기초 모델, 일반적인 사용 사례를 해결하는 엔드 투 엔드 솔루션을 포함한 내장 알고리즘에 액세스할 수 있습니다. 이제 SageMaker JumpStart를 사용하여 AWS […]

Amazon SageMaker Studio 신규 콘솔 디자인 변경

오늘 Amazon SageMaker Studio를 위해 새롭게 재디자인된 사용자 인터페이스(UI)를 발표하게 되어 매우 기쁩니다. SageMaker Studio는 포괄적인 ML 도구 세트를 사용하여 모든 기계 학습(ML) 개발 단계를 수행할 수 있는 단일 웹 기반 시각적 인터페이스를 제공합니다. 예를 들어 SageMaker Data Wrangler를 사용하여 데이터를 준비하고, 완전 관리형 Jupyter Notebook으로 ML 모델을 구축하고, SageMaker의 다중 모델 엔드포인트를 사용하여 모델을 […]

Amazon SageMaker 섀도우 테스트 기능 – ML 모델 변형 간 추론 성능 비교

기계 학습(ML) 워크로드를 제작 환경으로 옮길 때에는 배포 모델을 지속적으로 모니터링하고, 모델 성능의 편차가 발견되면 이를 처음부터 다시 수행해야 합니다. 신규 모델을 구축할 때는 일반적으로 기간별 추론 요청 데이터를 사용하여 오프라인에서 모델 검증을 시작합니다. 그러나 이 데이터는 때때로 현재의 실제 상황을 설명하지 못합니다. 예를 들어 제품 추천 모델에서 아직 보지 못한 신제품이 트렌드가 될 수 […]

Amazon QuickSight Q – 자동화된 데이터 준비 기능 출시

2021년 9월에 공개된 이 게시글에서 Jeff Barr 씨가 Amazon QuickSight Q의 정식 출시 소식을 발표했었습니다. 요약해서 말씀드리자면, Amazon QuickSight Q는 기업 사용자가 데이터에 대한 간단한 질문을 할 수 있는 자연어 쿼리 기능입니다. QuickSight Q는 쉬운 언어를 사용하여 데이터를 쿼리하고 대시보드, 제어 기능, 계산을 사용할 필요가 없는 기계 학습(ML) 기반 셀프 서비스 분석을 제공합니다. 작년에 QuickSight […]

Amazon Security Lake 미리 보기 – 보안을 위한 고객 소유 데이터 레이크 서비스

잠재적 보안 위협 및 취약성을 식별하기 위해 고객은 다양한 리소스에 대한 로깅을 활성화하고 분석 도구 내에서 쉽게 액세스하고 사용할 수 있도록 이러한 로그를 중앙 집중화해야 합니다. 이러한 데이터 소스 중 일부에는 온프레미스 인프라, 방화벽 및 엔드포인트 보안 솔루션의 로그가 포함되며, 클라우드를 사용하는 경우 Amazon Route 53, AWS CloudTrail 및 Amazon Virtual Private Cloud(VPC)와 같은 서비스가 […]