Đưa AI có trách nhiệm từ lý thuyết vào thực tế

Thúc đẩy phát triển AI một cách an toàn và có trách nhiệm thành công cụ vì mục đích tốt đẹp

Xây dựng AI một cách có trách nhiệm tại AWS

Sự phát triển nhanh chóng của AI tạo sinh mang lại sự đổi mới đầy hứa hẹn và đồng thời đặt ra những thách thức mới. Tại AWS, chúng tôi cam kết phát triển AI một cách có trách nhiệm, áp dụng phương pháp tiếp cận lấy con người làm trung tâm ưu tiên giáo dục, khoa học và khách hàng của chúng tôi để tích hợp AI có trách nhiệm trong vòng đời AI toàn diện.

Hình ảnh với những hình dạng đầy màu sắc

Thước đo cốt lõi của AI có trách nhiệm

Công bằng

Xem xét tác động đến nhiều nhóm bên liên quan khác nhau

Khả năng giải thích

Hiểu và đánh giá kết quả đầu ra của hệ thống

Quyền riêng tư và bảo mật

Thu thập, sử dụng và bảo vệ dữ liệu cũng như mô hình một cách thích hợp

An toàn

Ngăn chặn hành vi lạm dụng và tạo kết quả đầu ra gây hại cho hệ thống

Khả năng kiểm soát

Có cơ chế giám sát và điều khiển hành vi của hệ thống AI

Chính xác và mạnh mẽ

Đạt được kết quả đầu ra chính xác từ hệ thống, ngay cả với đầu vào không mong muốn và đối nghịch

Quản trị

Kết hợp biện pháp thực hành tốt nhất vào chuỗi cung ứng AI, trong đó có nhà cung cấp và người triển khai

Tính minh bạch

Cho phép các bên liên quan đưa ra lựa chọn có đủ cơ sở thông tin về mức độ tương tác với hệ thống AI

Thước đo cốt lõi của AI có trách nhiệm

Công bằng

Xem xét tác động đến nhiều nhóm bên liên quan khác nhau

Khả năng giải thích

Hiểu và đánh giá kết quả đầu ra của hệ thống

Quyền riêng tư và bảo mật

Thu thập, sử dụng và bảo vệ dữ liệu cũng như mô hình một cách thích hợp

An toàn

Ngăn chặn hành vi lạm dụng và tạo kết quả đầu ra gây hại cho hệ thống

Khả năng kiểm soát

Có cơ chế giám sát và điều khiển hành vi của hệ thống AI

Chính xác và mạnh mẽ

Đạt được kết quả đầu ra chính xác từ hệ thống, ngay cả với đầu vào không mong muốn và đối nghịch

Quản trị

Kết hợp biện pháp thực hành tốt nhất vào chuỗi cung ứng AI, trong đó có nhà cung cấp và người triển khai

Tính minh bạch

Cho phép các bên liên quan đưa ra lựa chọn có đủ cơ sở thông tin về mức độ tương tác với hệ thống AI

Dịch vụ và công cụ

AWS cung cấp các dịch vụ và công cụ giúp bạn thiết kế, xây dựng và vận hành các hệ thống AI một cách có trách nhiệm.

Thực hiện các biện pháp bảo vệ trong AI tạo sinh

Quy tắc bảo vệc của Amazon Bedrock giúp bạn triển khai các biện pháp bảo vệ phù hợp với các ứng dụng AI tạo sinh và phù hợp với các chính sách AI có trách nhiệm. Quy tắc bảo vệ cung cấp các biện pháp bảo vệ tùy chỉnh bổ sung bên cạnh các biện pháp bảo vệ gốc của FM, mang lại các biện pháp bảo vệ an toàn hàng đầu trong ngành bằng cách:

  • Chặn hơn 85% nội dung gây hại
  • Lọc hơn 75% phản hồi ảo giác cho khối lượng công việc RAG và tóm tắt
  • Cho phép khách hàng tùy chỉnh và áp dụng các biện pháp bảo vệ an toàn, riêng tư và trung thực trong một giải pháp duy nhất
Các đường kẻ mang nhiều tông màu

Đánh giá mô hình nền tảng (FM)

Đánh giá mô hình trên Amazon Bedrock giúp bạn đánh giá, so sánh và chọn mô hình nền tảng tốt nhất cho trường hợp sử dụng của bạn dựa trên các số liệu tùy chỉnh như độ chính xác, độ mạnh mẽ và độ độc hại. Bạn cũng có thể sử dụng Amazon SageMaker Clarifyfmeval để đánh giá mô hình.

Các hình khối có màu khác nhau trên nền xanh dương

Phát hiện sai lệch và giải thích dự đoán

Thiên kiến là sự mất cân bằng trong dữ liệu hoặc sự chênh lệch trong hiệu suất của một mô hình giữa các nhóm khác nhau. Amazon SageMaker Clarify giúp bạn giảm thiểu thiên kiến bằng cách phát hiện sớm thiên kiến tiềm ẩn trong quá trình chuẩn bị dữ liệu, sau khi đào tạo mô hình và trong mô hình đã triển khai bằng cách kiểm tra các thuộc tính cụ thể.

Hiểu hành vi của mô hình là rất quan trọng để phát triển các mô hình chính xác hơn và đưa ra quyết định tốt hơn. Amazon SageMaker Clarify cung cấp khả năng hiển thị hành vi của mô hình tốt hơn, do đó bạn có thể chứng minh tính minh bạch cho các bên liên quan, đưa ra các quyết định có yếu tố con người và theo dõi xem mô hình có hoạt động như dự định hay không.

Khám phá Amazon SageMaker Clarify

Thiết kế sóng xanh dương và xanh lá cây

Giám sát và đánh giá do con người thực hiện

Công tác giám sát rất quan trọng để duy trì các mô hình máy học (ML) chất lượng cao và giúp đảm bảo dự đoán chính xác. Trình giám sát mẫu của Amazon SageMaker tự động phát hiện và cảnh báo bạn về các dự đoán không chính xác từ các mô hình được triển khai. Và với Amazon SageMaker Ground Truth, bạn có thể áp dụng phản hồi do con người cung cấp trong suốt vòng đời máy học để cải thiện độ chính xác và mức độ phù hợp của các mô hình.

Các vật thể có kích thước và hình dạng khác nhau trên băng tải

Cải thiện quản trị

Quản trị máy học từ Amazon SageMaker cung cấp các công cụ được xây dựng theo mục đích để cải thiện quản trị các dự án máy học bằng cách cho phép bạn kiểm soát chặt chẽ hơn và hiển thị các mô hình máy học của mình. Bạn có thể dễ dàng nắm bắt và chia sẻ thông tin mô hình và cập nhật thông tin về hành vi của mô hình, như thiên kiến, ở một nơi duy nhất.

Khuôn mẫu trừu tượng của các dấu chấm được kết nối

AWS AI Service Cards

Thẻ dịch vụ AI là một tài nguyên để tăng cường tính minh bạch bằng cách cung cấp cho bạn một nơi duy nhất để tìm thông tin về các trường hợp sử dụng và hạn chế dự định, các lựa chọn thiết kế AI có trách nhiệm và các phương pháp tốt nhất tối ưu hóa hiệu suất cho các dịch vụ và mô hình AI của chúng tôi.

Khám phá thẻ dịch vụ có sẵn

Ảnh chụp xe ô tô chạy qua cầu từ trên cao

Đóng góp và hợp tác của cộng đồng

Với sự tham gia sâu sắc với các tổ chức nhiều bên liên quan như các nhóm làm việc về AI của OECD, Đối tác về AI, Viện AI có trách nhiệmỦy ban Cố vấn AI quốc gia cũng như quan hệ đối tác chiến lược với các trường đại học trên quy mô toàn cầu, chúng tôi cam kết hợp tác cùng với mọi người để phát triển công nghệ AI và máy học một cách có trách nhiệm và uy tín.

Chúng tôi áp dụng cách tiếp cận lấy con người làm trung tâm để giáo dục thế hệ lãnh đạo AI tiếp theo với các chương trình như chương trình Học bổng AI & MLWe Power Tech để tăng khả năng tiếp cận học tập thực hành, học bổng và cố vấn cho những người chưa được phục vụ hoặc ít được quan tâm trong lĩnh vực công nghệ.

Đầu tư của chúng tôi vào AI tạo sinh an toàn, minh bạch và có trách nhiệm bao gồm hợp tác với cộng đồng toàn cầu và các nhà hoạch định chính sách bao gồm các cam kết AI tự nguyện của Nhà Trắng, Hội nghị thượng đỉnh về an toàn AI ở Anhhỗ trợ ISO 42001, một tiêu chuẩn nền tảng mới để thúc đẩy AI có trách nhiệm. Chúng tôi hỗ trợ việc phát triển các khung pháp lý dựa trên rủi ro hiệu quả cho AI nhằm bảo vệ quyền công dân, đồng thời cho phép tiếp tục đổi mới.

AI có trách nhiệm là một lĩnh vực được nghiên cứu và phát triển tích cực tại Amazon. Chúng tôi có quan hệ đối tác chiến lược với giới học thuật, như Viện Công nghệ California và với Amazon Scholars, bao gồm các chuyên gia hàng đầu ứng dụng nghiên cứu học thuật của họ để giúp định hình luồng công việc AI có trách nhiệm tại Amazon.

Chúng tôi đổi mới cùng với khách hàng của mình - luôn đi đầu trong các xu hướng và nghiên cứu mới để mang lại giá trị - với các khoản tài trợ nghiên cứu liên tục thông qua Giải thưởng nghiên cứu Amazon và các ấn phẩm khoa học với Amazon Science. Tìm hiểu thêm về khoa học để xây dựng AI tạo sinh một cách có trách nhiệm trong blog Amazon Science này với nội dung giải thích các thách thức và giải pháp mới hàng đầu.

Tài nguyên AI có trách nhiệm