Amazon Web Services ブログ

AWS AppSync – 6 つの新機能を加え本番提供開始

データ指向のウェブおよびモバイルアプリを構築し (または構築したいと思い)、リアルタイムの更新やオフライン作業の機能が必要な場合は、AWS AppSync を確認する必要があります。AWS re:Invent 2017 においてプレビュー形式で発表され、ここで詳しく説明されている AWS AppSync は、iOS、Android、JavaScript、および React Native アプリで使用するために設計されています。AWS AppSync は、アプリケーションでクラウドから必要とする正確なデータを要求することを容易にするオープンで標準化されたクエリー言語である GraphQL を中心に構築されています。 アプリケーション開発プロセスを簡素化し、合理化する次の新しい 6 つの機能を備えた AWS AppSync のプレビュー期間が終了し、一般利用可能になり、本番稼働の準備ができたことを発表できることをうれしく思います。 コンソールログアクセス – AWS AppSync コンソールの中から GraphQL クエリー、ミューテーション、サブスクリプションをテストするときに作成される CloudWatch Logs を確認することができるようになりました。 モックデータによるコンソール試験遂行 – 試験遂行の目的でコンソールにモックコンテキストオブジェクトを作成し、使用することができるようになりました。 サブスクリプションリゾルバ – すでにクエリに対して行い、リクエストを変更する方法と同様に、AWS AppSync サブスクリプションリクエストに対するリゾルバを作成することができるようになりました。 DynamoDB のバッチ GraphQL オペレーション – DynamoDB のバッチオペレーション (BatchGetItem と BatchWriteItem) をリゾルバ機能の中の 1 つ以上のテーブルにわたって利用することができるようになりました。 CloudWatch […]

Read More

LumberyardとAWSを使用して数分で(数日ではなく)大規模で再現度の高いの地形を生成

ゲームの開発者はハイエンドPCを利用したとしても、大規模な地形生成には1日以上かけて完成させています。しかし、LumberyardとAWSクラウドの統合により、わずか10分でこれ(およびその他の重い計算プロセスも含む)を実現できます。 GDCのクラスルームセッションでMark Biales がこれらを紹介しており、こちらで見ることができます(英語)。   (翻訳はSA 森が担当しました。原文はこちら)

Read More

Amazon Kinesis Video StreamsとAmazon Rekognition Videoでハイエンドコンシューマーエクスペリエンスを提供するために顔認識を使用する

これは 1995 年、Amazon.com のウェブサイトが誕生してからわずか 1 か月の頃の画面です。この画面から見てすぐに分かることを 1 つ、もう少しよく見なければならないことを 1 つお話ししましょう。まず、この 23 年間という時の流れを感じさせるのはウェブデザインです。2 つ目は Eyes の広告文のあなたの気に入りそうな本が見つかったら疲れを知らぬ自動検索エージェントがメールを送りますという一節です。 Eyes は Amazon 初のパーソナライズされたオンラインショッピング環境でした。これは昔ながらの、店を訪れる顧客を知り尽くした地元の店のような、最高のサービスを再現するという旅路の、最初の一歩だったわけです。皆がある時期に、私たちのニーズすべてにぴったり合った体験ができるこの種のサービスを受けたことは、だれにとっても大変幸運なことだったと言えます。 そして 23 年後の今に時代を移しましょう。様々なところで、オンライン体験が主流になりました。世界のどこからでも Amazon.com へログオンし、皆さんの日頃のお買い物の仕方と同じ、一貫した体験を受けることができます。それも偏にウェブサイトが私たちのことを「知っている」からです。人によるサービスではこれは容易なことではありません。皆さんのお気に入りの店に行くとしましょう。それも、あなたの住み慣れた町にある店です。そこでは他の一般客と同じような対応を受けるのが普通です。 これを変えるにはどうすればいいと思いますか? たとえば、あなたが服の小売店の店員だとします。もし、店にやってくる顧客のことを知っていて、この情報を賢く活用できたとしたら、あなたはその顧客に素晴らしいサービスを提供できるはずです。たとえば、その顧客が既に購入した商品にぴったりな商品をすすめられます。もし、その商品の在庫に顧客のサイズがなければ、その商品をすすめることはできません。その顧客から前回、なんらかのトラブルや苦情があれば、特に気を配ることができます。顧客の顔とその顧客に関する情報をくまなく記憶できる驚異の記憶力をもった店員がいればいいだけです。 AWS で機械学習について読んだ後、あなたはこれを構築してみることにしました。アーキテクチャの中心となるのは、re:Invent 2017 で発表された 2 つのサービス、Amazon Kinesis Video Streams と Amazon Rekognition Video です。Kinesis Video Streams を使用すると、分析、機械学習のために、接続されたデバイスから AWS へ動画を簡単かつ安全にストリーミングできるようになります。Rekognition Video は簡単に Kinesis Video Streams に統合でき、顔のメタデータを集めたプライベートデータベースに対し、リアルタイムの顔認識を実行できます。あなたのソリューションのアーキテクチャは次のとおりです。 システムのプロトタイプを素早く構築するために、Raspberry Pi でホストされているカメラを使用します。これで店内の様子を撮影し、Amazon Kinesis […]

Read More

Amazon Kinesis Video Streams および Amazon AI サービスを使用した注意とエンゲージメントを測定するためのボディーランゲージの自動分析の構築

この記事は、Ned T. Sahin 博士 (Brain Power LLC およびハーバード大学)、Runpeng Liu (Brain Power LLC および MIT)、Joseph Salisbury 博士 (Brain Power LLC) と Lillian Bu (Brain Power LLC および MIT) によるゲストブログです。 広告からゲーム、そして教材に及ぶコンテンツの作成者は通常、事後アンケートやテスト、またはクリックスルーやバウンスなどのユーザーアクションによってコンテンツが成功したかどうかを判断します。これらの手法では、コンテンツの作成者が測定したいもの、つまりコンテンツの知覚価値が、客観的、遅発的、略式、事後、および/または相対的な代用物になりがちです。このようなメトリクスは、視聴者がその場で示すボディーランゲージに含まれる可能性がある視聴者の経時的な注意、エンゲージメント、そして快楽に関する継続的で意味のあるデータを見逃します。しかし、ボディーランゲージを数値化する、またはしばしば圧倒的な量になるビデオのデータセット内のパターンや重要なジェスチャーを単一のメトリックに要約するための系統的な手法はありません。 私たちは、落ち着きのない動き (fidgeting) や、その他の身体の動作を行動バイオマーカーとして数値的に要約するために、「Fidgetology」と親しみをこめて呼ばれる手法を発明しました。私たちは当初、自閉症および/または ADHD を持つ子供の拡張現実感システムを使用した後での症状の改善における新しい臨床的評価指標として、これらの子供たちの臨床試験ビデオを分析するために Brain Power (www.Brain-Power.com) で Fidgetology を発明しました。このブログ記事では、より一般化されたアーキテクチャと、目的に応じてすぐに試してみることができるサンプルコードをご提供します。これは、例えばあなたのコンテンツを閲覧している人のビデオなどで身体の動作を自動的に分析するために、アマゾンから新しくリリースされた人工知能製品を使用します。この手法は、映画、広告、テレビ番組、ビデオゲーム、政治運動、スピーチ、オンラインコース、または教室での授業など、様々なコンテンツタイプに応用できます。 この手法を使用することで、視聴者のビデオをストリームまたはアップロードして、視聴者の動作のレベルとパターンのわかりやすい数学的プロットとシングルイメージのサマリーを即座に取得することができます。これらの動作は、注意、焦点、エンゲージメント、不安、または快楽などの要因を推定するために役立ちます。また、これらの要因を確認して分離したり、ユニークなユースケースおよび/または個々のユーザーのためにカスタマイズしたりするために、高度な AWS Lambda 関数や機械学習モデルを追加することもお勧めします。 仕組み システムアーキテクチャダイアグラム Kinesis Video Streams インジェスチョン ビデオストリームを作成するクライアントウェブアプリケーションは、ユーザーが 1) 事前に録画されたビデオをアップロードする、および/または 2) ウェブカムフィードを […]

Read More

[AWS White Belt Online Seminar] AWS のよくある都市伝説とその真実 資料及び QA 公開

こんにちは、マーケティングの鬼形です。 先日 (2018/4/10) 開催致しました AWS White Belt Online Seminar「AWS のよくある都市伝説とその真実」の資料を公開いたしました。当日、参加者の皆様から頂いた QA の一部についても共有しております。

Read More

Amazon Aurora MySQLやAmazon RDS for MySQLへIAM authenticationを利用してSQL Workbench/Jから接続する

この記事では、Aurora MySQLクラスタに接続するために既に使用しているツールでIAM認証を使用する方法を説明します。この手順は、Amazon RDS for MySQLインスタンスでも同様にご利用頂けます。提供されたスクリプトを使用して、リソースをプロビジョニングしたり、IAM認証用に環境を構成したりすることができます。

スクリプトを使用してIAM認証情報を使用して、mysqlコマンドラインツールまたはSQL Workbench / Jを使用してクラスタに接続します。GitHubリポジトリでは、この投稿で使用されているコードサンプルをご覧いただけます。

Read More

あなたが主役の自動ビデオ編集!

何時間ものビデオ映像の中で特定の人物を見つけたいと思ったことはありませんか? 21 才のお誕生日パーティー用にビデオを準備していて、お誕生日を迎える子供の楽しい思い出を見つけたいのかもしれません。特定の社員が最後の勤務日に何をしたかを見るためにビデオ映像を探し回っているのかもしれませんし、ネイサンズ国際ホットドッグ早食い選手権での自分の活躍のハイライト映像を作りたいのかもしれません。 このブログ記事では、Amazon Rekognition Video と Amazon Elastic Transcoder の機能を組み合わせて、長時間のビデオを所定の人物の全映像を映し出すハイライトビデオに自動で変換する方法を学んでいただけます。 シンプルなデモ このプロセスを説明するため、私は AWS の Day in the Life of an AWS Technical Trainer ビデオを使用します。ビデオを見ると、カメラに向かって話す人、お客様を訓練する人、そしてオフィス内を歩く人が数人が出演しているのがわかります。 このビデオは、このブログで後ほど説明するプロセスで処理されたもので、このプロセスは具体的に選択した人物のビデオを自動で作成します。これらのアウトプットビデオを見て、最終版を確認してください。 John のビデオ Karthik のビデオ MJ のビデオ Edward のビデオ 現に、MJ のビデオは 2 つの個別のシーンが自動的に結合されたため、単一の連続した撮影ショットのように見えます。シーンがどこでつながれているかは、ビデオをじっくり見なければわかりません! プロセス これがハイライトビデオを作成するために使用された全体的なプロセスです。 Amazon Rekognition で顔コレクションを作成し、認識するべき人を教える。 Amazon Rekognition Video を使って、保存されたビデオファイル内の顔を検索する。 顔が認識された箇所の個々のタイムスタンプを収集して、それらを定義された長さのクリップに変換する。 Amazon Elastic Transcoder を使用して新しいビデオを結合する。 各ステップの説明は次のとおりです。 ステップ 1: […]

Read More

AWS Deep Learning AMI に、最適化された TensorFlow 1.7 が追加され、Amazon EC2 C5 および P3 インスタンスでの高速なトレーニングが可能に

Ubuntu および Amazon Linux 用の AWS Deep Learning AMI に、TensorFlow 1.7 に合わせた高度な最適化が提供され、Amazon EC2 インスタンスファミリ全体で高性能なトレーニングを提供できるようになりました。これは 3 月下旬に開始した TensorFlow 1.6 の最適化されたビルドの更新です。 最適化された TensorFlow 1.7 で、トレーニングをより高速に Amazon Machine Images (AMI) に、インテルの高度ベクトル命令 (AVX)、SSE、FMA 命令セットを備えた TensorFlow 1.7 ビルドが追加されました。AMI は、インテルの深層ニューラルネットワーク用数学カーネルライブラリ (Intel MKL-DNN) で完全に構成されており、インテル Xeon Platinum プロセッサ搭載の Amazon EC2 C5 インスタンスで高性能なトレーニングを提供できるようになりました。合成 ImageNet データセットによる ResNet-50 ベンチマークのトレーニングは、c5.18xlarge のインスタンスタイプでの最適化されたビルドを使用する、ストック TensorFlow 1.7 バイナリでのトレーニングよりも 9.8 倍高速でした。 また、AMI […]

Read More

AWS DMS を使用して Oracle ASM からAWSに移行する方法

このブログ記事では、ストレージインフラストラクチャが Oracle ASM のOracleソースエンドポイントでの AWS Database Migration Service (AWS DMS) の Change Data Capture (CDC) の使い方について説明します。

Oracle 自動ストレージ管理 (ASM) データベースフレームワークは、Oracleデータベースファイル用のボリュームマネージャとファイルシステムを提供し、シングルインスタンスの Oracle Database と Oracle Real Application Clusters (Oracle RAC) をサポートしています。ASMにはファイルシステムとデータベース内のボリュームを直接管理するためのツールがあります。これらのツールを使用すると、データベース管理者 (DBA) は標準的なOracle環境で使いなれたSQL文を使用してボリュームやディスクを制御できます。

Read More