Amazon Web Services ブログ

Localization Team

Author: Localization Team

Amazon より 新しい .BOT gTLD が誕生

本日、 Amazon の新規汎用最上位ドメイン (gTLD) 、 .BOT の公開をお知らせします。.BOTドメイン をお使いいただくと、ボットにIDやポータルを提供することができます。フィットネスボット、 slack ボット、 e コマースボットなど、 .BOT のドメインを通じて全機能に簡単にアクセス可能です。「ボット」という言葉は .COM TLD 内で2016年、4番目に登録数の多いドメインキーワードであり、ひと月に6000以上の登録がありました。.BOT ドメインではお客様のボットへのインターネット ID の付与、そして SEO パフォーマンスの向上をご提供します。 本記事の執筆時点では .BOT ドメインの価格は $75 〜、 Amazon Lex 、Botkit Studio 、 Dialogflow 、 Gupshup 、 Microsoft Bot Framework 、 Pandorabots のようなサポートツールを使って検証し公開する必要があります。今後さらに多くのツールのサポートを予定していますが、お気に入りのボットフレームワークがサポート対象外の場合はお気軽にご連絡ください。contactbot@amazon.com ここからは、whereml.bot のポッドを例にドメインの登録とプロビジョニングの流れを紹介します。その後でホストゾーンとして Amazon Route 53 にドメインを設定する手順を見ていきましょう。では始めましょう。 .BOT ドメインの登録 まず https://amazonregistry.com/bot で新規ドメインを入力し、magnifying classをクリックして入力したドメインが利用可能かどうかを確認します。利用可能であれば、登録ウィザードに進みます。 次に、ボットの認証方法を選ぶ画面になります。私は全てのボットを […]

Read More

Amazon Rekognition Video と Amazon Kinesis Video Streams を使用してサーバーレスのビデオ分析環境を構築し、ライブフィードをベースにした顔分析を簡単に実行する

ビデオを撮影し、保存するとろこまではごく一般的に行われていますが、そのビデオに主要人物、場所、またはものが映り込んでいるかどうかは、だれかが画面の前に座って、そのビデオを見る時間がとれるまで分析されることはありませんでした。  深層学習を活用した使い勝手の良いサービスを使用して、ビデオを分析するプロセスを合理化し、自動化できるとしたらどうでしょう? Amazon Rekognition Video は、人物を追跡したり、活動を検出したり、物体、有名人、および不適切なコンテンツを認識したりする、深層学習を使用した動画分析サービスです。Amazon Rekognition Video は、ライブストリーム内の顔を検出して認識できます。Rekognition Video は、Amazon S3 に保存されている既存のビデオを分析し、活動、人物と顔、物体を示すラベルをタイムスタンプ付きで返すため、シーンを簡単に見つけることができます。Amazon Kinesis Video Streams からライブビデオの顔認識を実行することも可能です。Amazon Kinesis Video Streams を使用することで、分析、機械学習 (ML)、およびその他の処理のために、接続されたデバイスから AWS へ動画を簡単かつ安全にストリーミングできるようになります。 今回のブログ記事では、自分で顔認識機能をテストする方法をご紹介します。この機能を利用することで、ライブビデオフィードから、既知の個人の顔情報を集めた特定の顔情報コレクションに一致する顔がそのビデオに含まれているかを判別することもできます。 これらの例としては、要人、参考人、会社や組織の特定の人々、または個々のユースケースで意味をなすあらゆる種類の顔情報コレクションが挙げられます。 サーバーレスアーキテクチャの概要 以下はこのブログ記事でご紹介するビデオ分析フローを図式化したものです。このコレクションでは単一の顔を使用しますが、容易に数百万の顔情報コレクションに拡張することができます。 このブログ記事では、Amazon Kinesis Video Stream にライブフィードを送信するためにあなたのノート PC のウェブカムを使用します。 そこから Amazon Rekognition Video のプロセッサがフィードを分析し、私たちの作成したコレクションと比較します。  一致した結果は、AWS Lambda と Amazon Simple Notification Service (Amazon SNS) との統合によりメールで私たちに送信されます。 結果を理解する 次に、ライブのビデオストリームで顔情報が特定されたときに、Amazon Rekognition Video からの結果を見てみます。この結果はウェブカムのフィードに既知または未知の顔が現れたときに、Amazon […]

Read More

AWS サポート – 最初の 10 年

AWS ではちょうど 10 年前に、Amazon EC2、Amazon S3、および Amazon SQS に焦点を当てたゴールドプランとシルバープランで AWS サポートを開始しました。シアトルの小さなチームが支えるこれらの開始当初のサポート提供から始まった AWS サポートは、現在 60 を超える場所で働く何千人もの人々で成り立っています。 これまでを振り返って 長い年月を経て、これらのサポートは AWS のますます多様化するカスタマーベースのニーズを満たすために成熟し、進化しました。AWS は、一番初めの実験から、ミッションクリティカルなワークロードとアプリケーションをデプロイするときまで、クラウド採用の旅におけるあらゆる段階でお客様をサポートすることを目標としています。 私たちは、AWS のサポートモデルを有益な先を見越したものとするために尽力してきました。AWS では、お客様がセキュアで堅固、かつ信頼できるシステムを構築するために役立つツール、アラート、および知識を提供するために最善を尽くしています。以下は、この目標に向けた最近の取り組みの一部です。 Trusted Advisor S3 バケットポリシーチェック – AWS Trusted Advisor は 5 つのカテゴリーのチェックを提供し、セキュリティとパフォーマンスを向上させるように設計された推奨事項を提供します。AWS は今年の初めに、S3 バケットアクセス権限チェックが無料になり、すべての AWS ユーザーにご利用いただけるようになったことを発表しました。AWS サポートのビジネスまたはプロフェッショナルレベルに加入されている場合は、Amazon CloudWatch Events を使ってこのチェック (およびその他多くの事柄) を監視できます。これは、人手を介さずにバケットを監視してセキュア化するために使用できます。 Personal Health Dashboard – このツールは、AWS でお客様に影響を与える可能性があるイベントが発生しているときにアラートとガイダンスを提供します。お使いの AWS リソースの基礎となる AWS のサービスのパフォーマンスと可用性に関するパーソナライズされたビューを見ることができます。また、必要に応じて自動フェイルオーバーと修復を開始できるように、Amazon CloudWatch […]

Read More

新しい AWS ブロックチェーンテンプレートを使用してブロックチェーンを始める

ブロックチェーンテクノロジーに関する今日の議論の多くは、古典的な Shimmer のフロアワックスの寸劇を思い出させます。Dan Aykroyd によれば、Shimmer はデザートのトッピングです。Gilda Radner はそれがフロアワックスであると主張し、Chevy Chase が議論を解決し、実際には両方であることを明らかにします。私が話している人々の中には、ブロックチェーンは新しい金融システムの基盤であり、国際的な支払いを促進する手段であると見る人がいます。他の人々は、ブロックチェーンを分散された元帳、物流、サプライチェーン、土地の登記、クラウドファンディング、その他のユースケースに適用できる不変のデータソースと見ています。いずれにしても、興味深い可能性がたくさんあり、お客様がこの技術をより効果的に使用できるよう支援しています。 本日、AWS ブロックチェーンテンプレートを開始します。これらのテンプレートを使用すると、Ethereum (パブリックまたはプライベート) や Hyperledger Fabric (プライベート) ネットワークをほんの数分で、数回クリックするだけで始めることができます。テンプレートが、堅牢でスケーラブルな方法で動かすために必要なすべての AWS リソースを作成し、設定します。 プライベート Ethereum ネットワークの開始 Ethereum テンプレートには、2 つの起動オプションがあります。ecs オプションは、Virtual Private Cloud (VPC) 内に Amazon ECS クラスターを作成し、クラスターで一連の Docker イメージを起動します。また、docker-local オプションも VPC で実行され、Docker イメージを EC2 インスタンスで起動します。このテンプレートは、Ethereum のマイニング、EthStats と EthExplorer のステータスページ、Ethereum RPC プロトコルを実装し、応答するノードのセットをサポートしています。どちらのオプションも、サービス検出のための DynamoDB テーブルを作成して使用し、ステータスページのための Application Load Balancer も使用します。 Ethereum […]

Read More

Amazon Comprehend と Amazon Relational Database Service を利用してテキスト分析ソリューションを構築する

これまで、大量の構造化されていないか、半分構造化されているコンテンツからの値の抽出は困難で、機械学習 (ML) のバックグラウンドが必要でした。Amazon Comprehend はエントリの障害をなくし、データエンジニアと開発者が豊富で継続的にトレーニングされた、自然言語処理サービスに簡単にアクセスできるようにします。 Amazon Comprehend からの分析を関連するビジネス情報と結合して貴重な傾向分析を構築することにより、完全な分析ソリューションを構築できます。たとえば、ブランド、製品、またはサービスについて取り上げている記事では、どの競合製品が最も頻繁に書かれているのかを理解することができます。顧客は顧客プロファイル情報と顧客のフィードバックのセンチメントも結合して、新製品を発売したときにどのタイプの顧客が特定の反応を見せるのかをより良く理解することもできます。 収集され、S3 に保存されるソーシャルメディアの投稿、ニュース記事や毎日の顧客のフィードバックなどの造化されていないか、半分構造化されているコンテンツの急速な増加により、S3 は分析できるときにもたらされる貴重な洞察の絶好の機会を提供してきました。Amazon Comprehend は Amazon Relational Database Service (RDS) とシームレスに機能します。このブログ投稿において、私たちは自然言語処理モデルの機械学習について学ぶ必要なく、データベースから豊かなテキスト分析ビューを構築する方法を紹介します。 私たちはこのことを Amazon Comprehend を Amazon Aurora-MySQL と AWS Lambda と結合して利用することで行います。これらは、センチメントを判別し、それをデータベースに返して保存するためにデータが挿入されるときに発せられる Aurora の一連のトリガーと統合されます。その後、より迅速な洞察をもたらす上で役立つ、データベースの追加データと結合できます。この同じパターンは、Amazon Translate などの他のアプリケーションレベルの ML サービスを統合して、コンテンツ自体を翻訳するために使用することもできます。 重要 -このパターンを使用しないとき: このパターンは、高速の Insert コール (1 秒間に数十を超える行数の挿入) を伴うワークロードを対象としていません。これらのトリガーは非同期ではないため、アドホック操作にのみお勧めします。Lambda 関数のコールを Insert ステートメントの後に置くことにより、各ステートメントに数十ミリ秒を追加します。トラフィックの多いデータソースの場合は、poll-aggregate-push アプローチを使用して、主たる Insert 書き込みパスから Lambda コールを削除する必要があります。 アーキテクチャ 次のダイアグラムは、このブログで設定するフローを示します。 ダイアグラムの矢印は、次のステップを示します。 MySQL […]

Read More

AWS の新しい Registry of Open Data (RODA)

ほぼ 10 年前、私の同僚の Deepak Singh は、彼の投稿の「Paging Researchers, Analysts, and Developers」で、AWS のパブリックデータセットを紹介しました。Deepak が現在も AWS チームの重要な一員であり、パブリックデータセップログラムがまだまだ強くなっていることを報告できて嬉しく思います! 本日、オープンでパブリックなデータへの新しい取り組みである AWS の Registry of Open Data または RODA を発表いたします。このレジストリには既存のパブリックデータセットが含まれており、誰でも自分のデータセットを追加して、AWS でアクセスして分析することができます。 レジストリの内側 ホームページに、レジストリに含まれているすべてのデータセットの一覧があります。 検索用語を入力すると、一致するデータセットだけが表示され、リストは縮小します。 それぞれのデータセットには、使用例、ライセンス情報、AWS でのデータセットの検索とアクセスに必要な情報など、関連する詳細ページがあります。 この場合、単純な CLI コマンドを使用してデータにアクセスできます。 また、プログラムでアクセスしたり、EC2 インスタンスにデータをダウンロードしたりすることもできます。 リポジトリへの追加 公開されているデータセットを RODA に追加したい場合は、プルリクエストを送信してください。オープンデータレジストリリポジトリに移動し、CONTRIBUTING ドキュメントを読んで、データセットディレクトリの既存ファイルの 1 つをモデルとして使用して、データセットを記述する YAML ファイルを作成します。 プルリクエストは定期的に確認していますので、リポジトリを「スター」するか見ることで、追加や変更を追跡することができます。 感動させてください 強力で興味深い方法でデータを使用する方法を示すブログの投稿やアプリとともに、新しいデータセットの登場を楽しみにしています。皆様からのご感想をお待ちしています。 — Jeff;

Read More

EFS ファイルシステムを Amazon SageMaker ノートブックに (ライフサイクル設定を含めて) マウントする

今回のブログでは、Amazon Elastic File System (EFS) を Amazon SageMaker ノートブックインスタンスにマウントする方法について説明します。この方法を使えば、大規模なデータセットを保存してアクセスすること、そして SageMaker ノートブックインスタンスからの機械学習スクリプトを共有することが容易になります。 Amazon SageMaker ノートブックには、Jupyter Notebook サーバーを実行している自分自身のインスタンスに高速にアクセスするための機能が用意されています。そこから、Amazon SageMaker の分散マネージドトレーニング環境にアクセスし、リアルタイムで、実用グレードのホストエンドポイントをセットアップすることができます。Amazon SageMaker の高速でスケーラブルなアルゴリズムや、構築済みディープラーニングフレームワークコンテナを使用できます。Amazon EFS はシンプルでスケーラブルなファイルストレージを提供します。これは同時に複数の AWS リソース間で共有することができます。これら 2 つを組み合わせれば、まさに自分のノートブック環境から、大規模な機械学習データセットや共有コードに簡単にアクセスできます。 現在のところ、 Amazon SageMaker のノートブックインスタンスは、5 GB の Amazon Elastic Block Store (EBS) ストレージから開始し、約 20 GB の非永続的ストレージに拡大するようになっています。さらに大きなファイルは Amazon S3 からアクセスできますが、ファイルシステムと同じほどの柔軟性は提供されていません。柔軟性と大規模なデータセットを必要とするユースケースでは、EFS をノートブックインスタンスにマウントすることにより、その要件を満たすことができます。一部の顧客はまた、すでに EFS をマウントして、ファイルを保存し、既存の EC2 インスタンスにわたって共有しています。これは EFS と Amazon SageMaker が協力できる、別の分野です。 既存の EFS […]

Read More

Amazon Translate を使用したチャットチャンネル

世界では毎日、数百万のユーザーがメール、ソーシャルネットワーク、およびチャットプラットフォームやメッセージボードなど、他のオンラインコミュニティを通じて互いに通信しています。しばしばユーザーは特定のコミュニティに興味を抱いてチャットの会話に参加したいと思いますが、オンラインコミュニティの第一言語がユーザーが理解できる言語とは異なる場合があります。 このようなコミュニティの 1 つがゲーマー向けの世界最大のソーシャルビデオサービスである Twitch です。毎日、共有している関心事について見たり、話したり、チャットしたりするために、数百万のコミュニティメンバーが集まります。チャットはどのストリームにも内蔵されているので、ストリームを受動的に見ている代わりに、ショーに参加することができます。あなたは Twitch にはあなたの言語を必ずしも話す必要のない多くのストリーマーがいることに気付きますが、それでもあなたはストリームを楽しんだり、チャットに参加したりしたいと思うかもしれません。 このようなコミュニケーションを実現するため、AWS は、高速、高品質、適正価格の言語翻訳機能を備えたニューラルマシン翻訳サービスである Amazon Translate を用意しています。Amazon Translate は、ユーザー間のクロスリンガルコミュニケーションを可能にするオンデマンド翻訳機能を提供します。チャット、メール、ヘルプデスク、チケット発行アプリケーションにリアルタイム翻訳機能を追加すれば、英語を話す担当者や従業員は複数の言語で顧客とコミュニケーションをとることができるようになります。 このブログポストは、Twitch チャネルで Amazon Translate を使ってクロスリンガルチャットを実現する方法をカバーします。あなたはまた、受信したリアルタイムメッセージを有声音で発音するテキスト読み上げサービス、Amazon Polly の使用法も学習します。この追加機能によって、アクセス機能が強化され、ユーザーは、他のタスクに集中しながらメッセージを聞くことができます。 ソリューションの概要 このポストでは、CSS と JavaScript を備えた HTML ページを作成します。JavaScript ライブラリを使用して、Twitch チャネルに接続し、メッセージの受信を開始します。リアルタイムメッセージを受信すると、AWS SDK を使用して Amazon Translate を呼び出し、翻訳されたこれらのメッセージを UI に表示します。音声オプションを有効にした場合、AWS SDK を使用して Amazon Polly を呼び出し、音声合成されたこれらのメッセージをユーザー先で再生します。 Twitch アカウントを作成して構成する twitch.tv に移動して、Twitch アカウントにサインアップします。 Twitch アカウントのサインアップに成功したら、https://twitchapps.com/tmi に移動して、Twitch OAuth トークンを作成します。 [Connect with […]

Read More

より高速で、より柔軟性のあるモデルを Amazon SageMaker 線形学習者でトレーニングする

本日、Amazon SageMaker は、内蔵の線形学習者アルゴリズムに対して、いくつかの機能追加を実施しました。Amazon SageMaker アルゴリズムは、労力を必要とせずに巨大なデータセットにスケールし、比類のない速度を達成できる、最新のハードウェア最適化の利点を活用できるように設計されています。Amazon SageMaker の線形学習者アルゴリズムは、線形回帰および二項分類アルゴリズムの両方を包含しています。 これらのアルゴリズムは金融、不正/リスク管理、保健、ヘルスケアにおいて広く使われています。学習者アルゴリズムの新しい機能は、トレーニングの速度を向上させ、異なるユースケースに合わせてモデルをカスタマイズしやすくするものです。例としては、不均衡クラスによる分類が含まれます。これは、ある結果が別のものよりずっとまれにしか生じないような分類です。また、回帰に特化した損失関数もあります。特定のモデルエラーに対して、他のものよりも大きなペナルティを科すことが重要な場合に対応します。 このブログでは、次の 3 つの点を扱います。 最適なモデルに対しては早期に終了して保存すること。 線形学習者モデルをカスタマイズする新しい方法。次のものが含まれます。 ヒンジ損失 (サポートベクターマシン) 分位点損失 Huber 損失 イプシロン不感応損失 クラス重み付けオプション それから、二項分類におけるパフォーマンスを向上させるためにクラス重み付けを用いる例を実際に試してみます。 早期終了 線形学習者は、確率的勾配降下法 (SGD) または Adam のような SGD の変種を用いて、モデルをトレーニングします。トレーニングでは複数回にわたってデータを処理することが求められます。これはエポックと呼ばれています。データはバッチ、ときにはミニバッチと呼ばれる塊として、メモリに読み込まれます。エポックは何回実行するべきでしょうか。理想的には、収束するまでトレーニングを行いたいところです。つまり、これ以上繰り返しても利点が増えなくなるところまでです。モデルが収束してからもエポックを実行するのは時間とメモリの無駄ですが、適切なエポック数を推測するのは、実際にトレーニングジョブを実行するまでは困難です。トレーニングのエポック数が少なすぎると、モデルの精度は本来可能な精度よりも落ちてしまいます。しかし、エポック数が多すぎると、リソースが無駄になりますし、過剰適合によってモデルの精度が悪化する可能性もあります。当て推量を避け、モデルトレーニングを最適化するために、線形学習者には 2 つの新しい機能が追加されました。自動的な早期終了と、最適なモデルの保存です。 早期終了は 2 つの基本的様式で動作します。検証セット付きと検証セットなしです。多くの場合、データはトレーニング、検証、および試験データセットに分割されます。トレーニングは損失の最適化のため、検証はハイパーパラメーターのチューニングのため、試験はモデルがまだ得ていない将来のデータに対しどの程度のパフォーマンスを出せるかを、公平に見積もるために行われます。検証データセット付きの線形学習者アルゴリズムを提供した場合、検証損失について向上が見られなくなると、モデルのトレーニングは早期に終了します。検証セットが利用できない場合、トレーニング損失について向上が見られなくなると、モデルのトレーニングは早期に終了します。 検証データセット付きの早期終了 検証データセットを利用することの大きな利点としては、トレーニングデータに対する過剰適合が起きたかどうか、そしていつ起きたかについて判断できることが挙げられます。過剰適合は、トレーニングデータへの適合性が緊密すぎる予測をモデルが与えるようになって、汎化されたパフォーマンス (まだ得ていない将来のデータに対するパフォーマンス) が低下することを指しています。下のグラフの右側は、検証データセット付きのトレーニングの典型的な進行状況を示しています。エポック 5 までは、モデルはトレーニングセットからの学習を続けており、検証セットでの成績が次第に良くなっています。しかしエポック 7~10 では、モデルがトレーニングセットへの過剰適合を起こし始めていて、検証セットでの成績が悪くなっていきます。モデルがトレーニングデータでの向上 (過剰適合) を続けていたとしても、モデルが過剰適合を始めたら、トレーニングを終了しなければなりません。そして、過剰適合が始まる直前の、最善のモデルを復元する必要もあります。これらの 2 つの機能は、線形学習者ではデフォルトでオンになっています。 早期終了のためのデフォルトのパラメーター値を下のコードに示します。早期終了の動作をさらに調整するため、値の変更を試してみてください。早期終了を完全にオフにするには、early_stopping_patience の値を実行するエポック数より大きくしてください。 early_stopping_patience=3, early_stopping_tolerance=0.001, パラメーター early_stopping_patience は、改善が見られない場合にも、トレーニングを終了するまで何回のエポックを待つかを定義します。早期に終了することにした場合でも、このパラメーターをある程度の大きさにするのは有用です。学習曲線には凹凸ができることがあるからです。改善がまだ続く場合でも、パフォーマンスが 1 ないし […]

Read More

ライフサイクル構成およびインターネットアクセスを無効にするオプションを使用して Amazon SageMaker ノートブックインスタンスをカスタマイズする

Amazon SageMaker は、データの探索と前処理用に Jupyter ノートブックを実行する、完璧なマネージドインスタンスを提供します。顧客は、構成済みのノートブックインスタンスをワンクリックで簡単に起動できることに大きな価値を見出しています。現在、私たちは、2 つの新しいオプションを提供することによってカスタマイズ性を向上させることに取り組んでいます。すなわち、ノートブックインスタンスのカスタマイズプロセスの自動化を支援するライフサイクル構成と、ノートブックインスタンスに制御されたセキュリティ環境を提供するために、ノートブックインスタンスをパブリックインターネットから切り離す機能です。 ノートブックインスタンスのライフサイクル構成 Amazon SageMaker は現在、追加ライブラリをノートブックインスタンスに手動でインストールする機能を備えています。しかし、ノートブックインスタンスを停止させると、これらの追加したカスタマイゼーションも、同時に削除されてしまいます。そのため、ノートブックインスタンスを再起動した場合、これらを再び手動で追加する必要があります。Amazon SageMaker の新しいライフサイクル構成機能を使用すると、これらのカスタマイゼーションをインスタンスのライフサイクルのさまざまなフェーズで適用するのを自動化することができるようになります。たとえば、一連のライブラリをインストールするスクリプトを作成し、ライフサイクル構成機能を使用して、ノートブックインスタンスが起動されるたびにスクリプトが自動的に実行されるように構成することができます。あるいは、ノートブックインスタンスが作成されたとき、スクリプトが一度だけ、自動的に実行されるように構成することもできます。 TurboTax や QuickBooks など、グローバルに製品およびプラットフォームを提供していることで知られる Intuit は、ライフサイクル構成を使用して、セキュリティスキャナーのデプロイや、ルーティングルールの再構成など、ノートブックインスタンスのセキュリティ環境をカスタマイズしています。また Intuit は、ノートブックインスタンスではインターネットへの直接アクセスを無効にし、ライフサイクル構成を使用して、VPC にデプロイされたプライベートパッケージインデックスを利用する、パッケージのインストールをブートストラップしています。 ノートブックインスタンスのインターネットへの直接アクセスを無効にするオプション 従来は、すべての Amazon SageMaker ノートブックインスタンスがデフォルトでインターネットへの直接アクセス権を持っており、それを無効にすることはできませんでした。これにより、パブリックインターネットから、人気のあるパッケージ、ノートブック、データセットをダウンロードしたり、他の Amazon SageMaker コンポーネントにアクセスしたりすることができました。しかし、ノートブックインスタンスを仮想プライベートクラウド (VPC) に接続すると、ノートブックインスタンスは、『ノートブックインスタンスのセキュリティ』で議論しているように、データアクセスのための余計なアベニューを装備することになります。その結果、いくつかの顧客から、インターネットアクセスを制御する機能についての要望がありました。特に、自社の VPC に接続するノートブックインスタンスについての要望です。現在、Amazon SageMaker ノートブックインスタンスのデフォルトのインターネットへの直接アクセスを無効にするオプションが用意されました。これを使用すると、VPC 構成を信頼して、ノートブックインスタンスにインターネットアクセスを許可するかしないかを制御させることができます。 これらの新しい機能について調べるために、Amazon SageMaker コンソールを開いて、ノートブックインスタンスを作成します。ページの下にある [Lifecycle configuration (ライフサイクル構成)] にナビゲートします。  始めて使用する場合、アカウントにはいかなるライフサイクル構成も含まれていないので、[Create a lifecycle configuration (ライフサイクル構成の作成)] を選択します。 最初のライフサイクル構成を作成するための作業ウィンドウがポップアップします。ライフサイクル構成を追加していけば、このウィンドウのドロップダウンリストから既存の構成を選択することができるようになります。 このポップアップウィンドウで、ライフサイクル構成に名前を付け、[Start notebook (ノートブックの起動)] または [Create […]

Read More