Amazon Web Services 한국 블로그

Category: Amazon EMR

Amazon EMR on EKS, Apache Spark 애플리케이션을 위한 컨테이너 종속성 맞춤 조정 및 패키징 기능 출시 (서울 리전 포함)

지난 AWS re:Invent에서 Amazon EMR on Amazon Elastic Kubernetes Service(Amazon EKS) 정식 출시 소식을 발표한 바 있습니다. 이 서비스는 Amazon EMR의 새 배포 옵션으로, 고객이 Amazon EKS에서 Apache Spark 프로비저닝과 관리를 자동화할 수 있게 해줍니다. Amazon EMR on EKS를 사용하면 고객이 EMR 애플리케이션을 다른 유형의 애플리케이션과 같은 Amazon EKS 클러스터에 배포할 수 있으므로 자사 모든 […]

Read More

새로운 기능 — Amazon EMR on Amazon Elastic Kubernetes Service(EKS)

수만 명의 고객이 Amazon EMR을 사용하여 Apache Spark, Hive, HBase, Flink,Hudi 및 Presto와 같은 프레임워크에서 빅 데이터 분석 애플리케이션을 대규모로 실행합니다. EMR은 이러한 프레임워크의 프로비저닝 및 조정을 자동화하고 다양한 EC2 인스턴스 유형으로 성능을 최적화하여 가격 및 성능 요구 사항을 충족합니다. 이제 고객은 Kubernetes를 사용하여 조직 전체에서 컴퓨팅 풀을 통합하고 있습니다. Amazon Elastic Kubernetes Service(EKS)에서 Apache […]

Read More

Amazon EMR 6.0.0을 사용하여 Docker로 Spark 애플리케이션 실행하기

지난 4월 Amazon EMR 6.0.0 버전을 정식 출시했습니다. Amazon EMR 6.0.0을 사용하면, Spark 사용자가 Docker Hub 및 Amazon Elastic Container Registry(Amazon ECR)의 Docker 이미지를 사용하여 환경 및 라이브러리 종속성을 정의할 수 있습니다. 사용자는 Docker를 사용하여 종속성을 손쉽게 정의하고 개별 작업에 사용할 수 있으므로 개별 클러스터 호스트에 종속성을 설치할 필요가 없습니다. 이 글에서는 EMR 6.0.0에서 Docker를 […]

Read More

Amazon EMR에서 spark-submit를 사용하여 사용자 애플리케이션 제출하기

빅 데이터로의 전환을 시작하는 고객은 종종 사용자 애플리케이션을 Amazon EMR에서 실행되는 Spark에 제출하는 방법에 대한 지침을 요청합니다. 예를 들어, 고객은 애플리케이션에 사용할 수 있는 메모리 및 계산 리소스의 크기를 조정하는 방법이나 사용 사례에 가장 적합한 리소스 할당 모델에 대한 지침에 대해 문의합니다. 이 게시물에서는 EMR에서 실행 중인 Spark에 제출된 애플리케이션에서 사용할 수 있는 메모리 및 […]

Read More

Amazon EMR에서 Apache Ranger를 사용하여 권한 부여 및 감사 구현

업데이트 날짜: 2020년 2월 14일: EMR 최신 버전 및 Apache Ranger 2.0을 지원하도록 업데이트 되었습니다. Apache Ranger 2.0을 필요로하는 Ranger Presto 플러그인에 대한 지원 추가됨. 참고: Ranger Presto 플러그인은 EMR 5.29 에서만 테스트 되었음. 업데이트 날짜: 2018년 9월 26일: EMR 및 Apache Ranger의 최신 버전을 지원하도록 업데이트 되었습니다. ————————————————– RBAC(역할 기반 액세스 제어)는 멀티 테넌트 […]

Read More

Amazon EMR에서 Apache Knox를 사용하여 경계 보안 구현

경계 보안은 클러스터 외부에서 액세스하는 사용자에게 안전한 Apache 하둡 클러스터 리소스를 제공하는 데 도움이 됩니다. Apache 하둡 클러스터와의 모든 REST 및 HTTP 상호 작용을 위한 단일 액세스 지점을 제공하여 클라이언트와 클러스터의 상호 작용을 간소화합니다. 예를 들어 클라이언트 애플리케이션에서 Kerberos가 활성화된 클러스터의 서비스와 상호 작용하려면 Kinit 또는 SPNEGO를 사용하여 Kerberos 티켓을 받아야 합니다. 이 게시물에서는 Apache […]

Read More

Apache Airflow, Genie 및 Amazon EMR을 통한 빅데이터 워크플로 오케스트레이션 – 2부

AWS에서 빅 데이터 ETL 워크플로를 실행하는 대기업은 많은 내부 최종 사용자를 지원하는 대규모로 운영하며 수천 개의 동시 파이프라인을 실행합니다. 이러한 상황과 새로운 프레임워크 및 빅데이터 프로세싱 프레임워크의 최신 릴리스에 보조를 맞추기 위해 빅 데이터 플랫폼을 지속적으로 업데이트 및 확장해야 하는 필요성에 따라, 빅 데이터 플랫폼의 관리를 간소화할 뿐 아니라 빅 데이터 애플리케이션에 대한 간편한 액세스를 […]

Read More

Apache Airflow, Genie 및 Amazon EMR을 통한 빅데이터 워크플로 오케스트레이션 – 1부

AWS에서 빅 데이터 ETL 워크플로를 실행하는 대기업은 많은 내부 최종 사용자를 지원하는 대규모로 운영하며 수천 개의 동시 파이프라인을 실행합니다. 이러한 상황과 새로운 프레임워크 및 빅데이터 프로세싱 프레임워크의 최신 릴리스에 보조를 맞추기 위해 빅 데이터 플랫폼을 지속적으로 업데이트 및 확장해야 하는 필요성에 따라, 빅 데이터 플랫폼의 관리를 간소화할 뿐 아니라 빅 데이터 애플리케이션에 대한 간편한 액세스를 […]

Read More

Amazon EMR Notebooks를 사용한 Python 라이브러리 설치 방법

작년에 AWS는 오픈소스 Jupyter 노트북 애플리케이션 기반의 관리형 노트북 환경인 Amazon EMR Notebooks를 소개했습니다.이 게시물에서는 EMR Notebooks를 사용하여 실행 중인 클러스터에서 직접 노트북 범위 라이브러리를 설치하는 방법을 알아봅니다. 이 기능이 도입되기 전에는 부트스트랩 작업에 의존하거나 사용자 지정 AMI를 사용하여 클러스터를 프로비저닝할 때 EMR AMI로 사전에 패키징되지 않은 추가 라이브러리를 설치해야 했습니다. 이 게시물에서는 EMR Notebooks […]

Read More

Amazon EMR 재구성을 통한 신속한 클러스터 수정

장기 실행 중인 Amazon EMR 클러스터를 사용하는 개발자 또는 데이터 과학자는 워크로드가 빠르게 변화하는 상황을 접하게 됩니다. 이러한 워크로드의 변화는 종종 클러스터에서 최적화된 실행을 위해 별도의 애플리케이션 구성을 필요로 합니다. 이제 재구성 기능을 사용해서 실행 중인 EMR 클러스터의 구성을 변경할 수 있습니다. EMR 릴리스 emr-5.21.0부터 이 기능을 사용해서 새 클러스터를 생성하거나 각 노드에 수동으로 SSH 접속하지 […]

Read More