Amazon Web Services 한국 블로그

AWS Korea

Author: AWS Korea

AWS Korea 블로그팀은 최신 AWS 뉴스 및 신규 출시 그리고 한국 고객 소식을 빠르게 알려드리기 위해 노력하고 있습니다.

Amazon API Gateway 매핑 템플릿과 Amazon SageMaker를 통한 기계 학습 기반 REST API 생성하기

AWS 고객들은 완전 관리형 기계 학습 서비스인 Amazon SageMaker를 사용하여 기계 학습 모델을 구축, 교육 및 배포 할 수 있습니다. 이를 통해 개인화 된 제품 추천을 하거나, 사용자에 따른 선호 사항을 자동으로 제공하는 애플리케이션을 통해 고객의 경험을 높일 수 있습니다. 그런데, 이런 애플리케이션을 구축 할 때 아키텍처의 주요 고려 사항 중 하나는 사용자 단말기나 웹브라우저에서 실행되는 […]

Amazon API Gateway 기반 HTTP API 정식 출시 (서울 리전 포함)

2015 년 7 월 AWS는 Amazon API Gateway를 발표하여, 다양한 유형의 아키텍처 앞에서 안전하고 확장 가능한 API를 신속하게 구축 할 수 있었습니다. 그 이후로 API Gateway 팀은 고객을 위한 새로운 기능과 서비스를 계속 구축해 왔습니다. 그림 1 : 타임 라인을 강조하는 API Gateway 기능 2019 년 초 API 게이트웨이 서비스에 대한 고객 피드백을 기반으로  새로운 언어와 기술을 프로토 […]

[기술 백서] Amazon EMR 마이그레이션 가이드

전 세계의 많은 비즈니스 영역에서 Apache Hadoop 및 Apache Spark 과 같은 새로운 빅 데이터 처리 및 분석 프레임워크를 도입을 시도해 왔으나 이러한 기술을 온프레미스 데이터 레이크 환경에서 운영하기 위해 해결해야 하는 과제들이 있습니다. 뿐만 아니라 현재 배포 공급업체와의 장기적인 문제도 고려가 필요합니다. 이러한 문제들을 다루기 위해 AWS는 Amazon EMR 마이그레이션 가이드 (2019년 6월에 초판 게시)를 […]

Amazon EC2 스팟 인스턴스를 통한 EMR 기반 Apache Spark 활용 10가지 모범 사례

Apache Spark는 사용 편의성, 빠른 성능, 메모리 및 디스크 사용률과 내결함성 등 다양한 이유로 가장 인기 있는 오픈소스 빅데이터 분석 플랫폼이 되었습니다. 이러한 기능은 인스턴스의 폐기 및 삭제가 가능한 클라우드 컴퓨팅의 개념과 매우 깊은 관련이 있습니다. Amazon EMR은 EC2 인스턴스를 사용하여 방대한 양의 데이터를 쉽고 빠르고 경제적으로 처리할 수 있는 관리형 하둡 프레임워크를 제공합니다. Amazon […]

마켓컬리, AWS 기반 신선 식품 샛별 배송 서비스 구현 사례

마켓컬리는 신선식품을 이른 아침에 고객에게 전달하는 샛별 배송을 통해 한국에서 엄청난 성공을 거두고 있는 스타트업입니다. ■ 샛별 배송 서비스란? 마켓컬리의 배송 담당 기사의 업무는 저녁 8시에 시작됩니다. 이들은  출근을 하자마자 당일 배송해야 할 해당 권역의 상품을 싣습니다. 배송 관리 시스템은 마켓컬리가 고객과 약속하고 있는 ‘아침 7시까지 배송 완료’ 정책을 지킬 수 있도록 서울과 수도권 지역 […]

AWS 파트너 솔루션 파인더 한국어 지원 시작

AWS 고객들이 APN 파트너사를 쉽게 검색하고 파트너사의 정보를 확인할 수 있는 도구인 AWS 파트너 솔루션 파인더가 한국어 지원을 시작했습니다. 이를 통해, AWS 고객들은 한국어 키워드로 APN 파트너사를 검색하고, APN 파트너사 정보를 한국어로 확인할 수 있습니다. 또한 파트너사의 전문성, 고객사례, APN 프로그램 인증 등의 필터도 파트너 검색시에 활용이 가능합니다. 검색된 결과는, AWS 서비스제공 프로그램 , AWS […]

AWS .NET SDK를 통해 게임 개발 시작하기

국내외 많은 글로벌 게임 회사는 AWS가 제공하는 확장성을 통해 수백만 명의 동시 플레이어를 지원하고 언제 어디서나 낮은 지연 시간으로 최적의 게임 경험을 즐길 수 있습니다. 하지만, 다양한 AWS 서비스와 많은 유스 케이스로 인해 게임 개발자가 손 쉽게 게임 개발을 시작하는 방법은 여전히 쉽지 않습니다. 이 글에서는 게임 개발 시, AWS를 사용하는 첫 단계를 안내합니다. AWS […]

Amazon EMR 클러스터 탄력성에 따른 Spark 노드 손실 문제 해결 방법

AWS 고객은 Amazon EMR의 클러스터 탄력성을 활용하여 작업량에 따라 사용 인스턴스 수를 조정해서 비용을 절감할 수 있습니다. 특히, EC2 스팟 인스턴스를 사용하면, 빠르게 끝나는 작업에 대해서 80-90%의 저렴한 비용으로 작업을 할 수 있습니다. 또한, Amazon EMR의 오토 스케일링 기능을 통해 고객은 클러스터 사용이나 기타 작업 관련 지표에 따라 클러스터를 동적으로 확장 및 축소 할 수 […]

Parquet 형식의 EMRFS S3 최적화 커미터를 통한 Apache Spark 쓰기 성능 개선하기

EMRFS S3 최적화 커미터는 Amazon EMR 5.19.0부터 Apache Spark 작업에 사용할 수 있는 새로운 출력 커미터입니다. 이 커미터는 EMRFS(EMR 파일 시스템)을 사용하는 Amazon S3에 Apache Parquet 파일을 쓸 때의 성능을 개선합니다. 이 게시물에서는 최근 성능 벤치마크를 실행하여 신규 최적화된 커미터를 기존 커미터 알고리즘(FileOutputCommitter 알고리즘 버전 1 및 2)과 비교하여 어떻게 Spark 쓰기 성능이 개선되었는지 알아봅니다. […]

AWS Fargate, Fluentd 및 Amazon Kinesis Data Firehose를 사용한 확장형 로그 솔루션 집계기 구축하기

최신 분산 애플리케이션들은 매일 기가바이트 수준의 로그 데이터를 생산해 낼 수 있는데, Amazon S3에서 Elasticsearch에 이르는 수많은 솔루션을 활용하면 이에 대한 분석과 스토리지 처리는 비교적 어렵지 않게 구현할 수 있지만 로그를 안정적으로 집계하고 최종 대상까지 전송하는 것은 여전히 어려운 영역에 속합니다. 이 게시물에서는 AWS Fargate, Amazon Kinesis Data Firehose 및 Fluentd를 사용하여 로그 집계기를 구축하는 […]