Amazon Web Services ブログ

Category: Artificial Intelligence

Amazon SageMaker Ground Truth — 高い精度のデータセットを構築し、ラベル付けのコストを最大70%削減

1959年、アーサー・サミュエルは機械学習を「明示的にプログラムされなくても新しいことを学べる能力をコンピュータに与える学問分野」と定義しました。しかし、機械仕掛けの神 (deus ex machina) など存在せず、学習プロセスにはアルゴリズム (「どのように学ぶか」) と学習用データセット (「何から学ぶか」) が必要です。 今日では、ほとんどの機械学習タスクは教師あり学習という技術を用いており、アルゴリズムはラベル付けされたデータセットからパターンや行動を学習します。ラベル付けされたデータセットにはデータサンプルに加え、それぞれに対する正しい答え、すなわち “ground truth” が含まれています。手元の問題に合わせて、ラベル付きの画像 (「これは犬」「これは猫」) を使ったり、ラベル付きのテキスト (「これはスパム」「これは違う」) を使ったりします。

Read More

新発表 – Amazon Forecast – 時系列予測を容易に

未来を予見する能力は、信じられないほどのスーパーパワーとなります。AWSは、あなたにその力を与えることはできませんが、機械学習において、数ステップで時系列の予測を行うお手伝いができます。 時系列予測のゴールは、毎週の売上、1日の在庫レベル、1時間ごとのウェブサイトトラフィックなどの時間依存データの将来の値を予測することです。 今日の企業は、シンプルなスプレッドシートから複雑な財務計画ソフトウェアまであらゆるものを使用して、製品需要、リソースニーズ、財務パフォーマンスなどの将来のビジネス成果を正確に予測しようとしています。 これらのツールは、時系列データと呼ばれる一連の履歴データを見て予測を作成します。例えば、そのようなツールは、レインコートの将来の売上を、過去の売上データと、未来が過去によって決定されるという前提をもとにして、単に予測しようとする場合があります。 このアプローチは、不規則な傾向を持つ大量のデータセットに対して正確な予測を生成するのに苦労する可能性があります。 また、時間とともに変化するデータ系列(価格、割引、ウェブトラフィックなど)を、製品の機能や店舗の場所などの関連する独立変数と簡単に組み合わせることもできません。

Read More

Amazon Personalize – すべてのユーザにリアルタイムパーソナライゼーションとレコメンデーションを

機械学習は、間違いなく広範囲にわたって取り組むべき魅力的なトピックを提供してきましたが、パーソナライゼーションやレコメンデーションほどのものはありません。 一見、ユーザーと好みのアイテムをマッチングするのは簡単な問題のように聞こえるかもしれません。しかしながら、効率的なレコメンデーションシステムを開発するのは難易度が高く、数年前にNetflix が 1 億円相当の懸賞金をかけて映画レコメンデーションコンクールを実施したほどです!事実、現時点でリアルタイムなパーソナライゼーションの仕組みを構築・最適化し、デプロイするには、分析・応用機械学習・ソフトウェアエンジニアリング・システム運用に特化したエキスパートが必要になります。ほとんどの組織はこれらの課題を克服するための知識・スキル、そして経験を持っておらず、レコメンデーションを利用するアイデアを諦めるか、パフォーマンスの低いモデルを構築するに留まっています。 20年以上もの間、 Amazon.com は、商品検索から決済まで購買経験のいたるところでパーソナライズされたレコメンデーションを統合しながら、大規模なレコメンデーションシステムを構築してきました (詳細な情報は次の文献を参照ください:”Two Decades of Recommender Systems at Amazon.com“)。 全ての AWS のお客様が同様のことをするお手伝いをするために、本日、Amazon Personalize を発表することができ幸せに思います。Amazon Personalize はパーソナライゼーションやレコメンデーションを機械学習の経験が殆ど無い開発者に委ねることが可能なフルマネージドサービスです! Amazon Personalize の紹介 Amazon Personalize はどのようにパーソナライゼーションとレコメンデーションをシンプルにしたのでしょうか?過去に発行した Blog で説明されているように、Factorization Machines のようなアルゴリズムを利用すると、Amazon SageMaker 上にレコメンデーションモデルを構築するのはすでに可能でした。しかしながら、この方法で良い結果を得るためには、大量のデータの準備と専門家によるチューニングが必要になると言わざるを得ません。 Amazon Personalize でレコメンデーションモデルを作るのはもっと簡単です。複雑な機械学習のタスクを自動化する新しいプロセスである AutoML を使うことで、Personalize は機械学習モデルを設計し、トレーニングし、デプロイするのに要求される難しい作業を実行し、高速化します。 Amazon Personalize は Amazon S3 に保存されているデータセットとストリーミングデータセット (JavaScript トラッカーやサーバサイドからリアルタイムで送られてくるイベントなど) の両方をサポートします。大まかな流れは次のようになります: ユーザー ID や アイテム ID に対応する […]

Read More

Amazon Elastic Inference — GPUを利用した深層学習推論の高速化

近年の AI や深層学習の発展には、Graphics Processing Units (GPU) の素晴らしい処理能力が重要な役割を果たしてきました。 10年程前、研究者は機械学習や High Performance Computing (HPC) に対して、大規模なハードウェア並列演算能力を活用する方法を編み出しました。興味のある方は、2009年にスタンフォード大から発表され大きな影響を与えた、この論文 (PDF) をご覧ください。 現在では、GPU のおかげで開発者やデータサイエンティストは複雑なモデルを医療画像分析や自動運転の大量のデータで学習できています。例えば、Amazon EC2 P3 ファミリーを利用すると1インスタンスあたり最大8枚の NVIDIA V100 GPU、つまり混合精度演算で最大 1PFLOPS を利用できます。これが10年前の最速のスーパーコンピューターと同じパフォーマンスだなんて信じられるでしょうか?

Read More

AWS DeepRacer – 強化学習のハンズオン at re:Invent

強化学習は、”エージェント”が、インタラクティブな環境下でトライアンドエラーベースで行動が可能なときに、行動からのフィードバックを利用して、事前に定義されたゴールに到達する、あるいは、有る種のスコアや報奨を最大化するよう学習を行う機械学習の形式の一つです。強化学習は、教師あり学習などの他の型式の機械学習とは対照的に、一連の事実(ground truth)を利用してモデルの学習を行い、推論を行います。 AWS re:inventでは、皆様に強化学習のハンズオンをご提供します。本日その全てをご紹介します。このハードウェアとソフトウェアの組み合わせは、(文字通り)物事を前進させるのに役に立ちます! AWS DeepRacer ハードウェアとソフトウェアについてまず最初にご紹介します。AWS DeepRacerは、1/18スケールの4輪ラジコンカーです: オンボードIntel Atom® プロセッサー、1080p解像度の4メガピクセルカメラ、高速WiFi(802.11ac)、複数のUSBポート、およそ2時間稼働できるバッテリーを搭載しています。Atom processor上で、Ubuntu 16.04 LTS、ROS(Robot Operating System)、および Intel OpenVino™ コンピュータービジョンツールキットが稼働します。

Read More

Amazon Translate カスタム語彙のご紹介

Amazon Translate は高速で高品質な言語翻訳を手ごろな価格で提供するニューラル機械翻訳サービスです。本日 (2018/11/27) お客様が Amazon Translate の出力をカスタマイズし、企業や分野に固有の語彙を用いることのできるカスタム語彙を発表いたします。翻訳のリクエストとともにカスタム語彙をアップロードし呼び出すことで、文脈や Amazon Translate のアルゴリズムが出力する結果に関わらず、お客様固有のコンテキストに沿って、例えばブランド名、キャラクター名、モデル名が思い通りに翻訳されます。

Read More

新機能 – Amazon QuickSightへの機械学習(ML)によるインサイト機能をプレビューで提供

Amazon QuickSightは、高速で、クラウドを活用したBIサービスであり、機能リッチでインタラクティブなダッシュボードを活用することで組織の中の誰もがビジネス・インサイト(Insight – 知見)を得ることができます。Pay-per-session(セッション単位)の料金やダッシュボードの埋め込み(embed)機能により、BIをより誰もが、かつ高い費用対効果でアクセスできるようにしてきました。 しかし、お客様のデータは日々増え続けているため、データをビジネス・インサイトに活用することはより難しくなりつつあります。こういう時こそ機械学習(Machine Learning : ML)の出番でしょう。Amazonは機械学習を利用した自動化や大規模対応のパイオニアであり、ビジネスアナリシスを、サプライチェーン、マーケティング、リテール、ファイナンス等で利用しています。 AWSはこれらAmazonでの多様な機械学習の機能をサービスとしてお客様に提供しています。本日、Amazon内の利用で実績を積んできた3つの新機能をQuickSightに追加し、可視化するだけでなく、機械学習によるインサイト(知見)を得られるようになることを発表いたします: MLによる異常検知:10億ポイント以上のデータを継続的に分析することで異常を自動検知し、隠れていたインサイトを提供 MLによる予測:ポイント&クリックのシンプルな操作で、予測と、what-if分析を提供 自動ナラティブ:ダッシュボード上に分かりやすい説明文を表示し、お客様がデータを理解する事をサポートする

Read More

新機能 – Amazon Comprehend Medical – ヘルスケア業界のお客様のための自然言語処理

私は胃腸科医と皮膚科医の息子で、解剖学的構造、手術手順、投薬名、またそれらの略語など、複雑な医学用語が飛び交う、専門外には理解できない会話を聞きながら育ちました。好奇心を抱いた子供にとってこの経験はとても魅惑的で、両親がある種の魔法使いのようなものなのか、またはとってもちんぷんかんぷんなことを言っているのか、と不思議に思っていました。 このような理由から、Amazon Comprehend の拡張版である、ヘルスケア業界のお客様向けの Amazon Comprehend Medical をご紹介できることは、とても嬉しく思います。   Amazon Comprehend の簡単な振り返り Amazon Comprehend は、昨年の AWS re:Invent でローンチされたものです。簡単にいうと、言語検出、エンティティのカテゴリ分類、感情分析、キーフレーズ抽出などの、シンプルなリアルタイム API を提供する自然言語処理サービスです。さらに、テキストドキュメントを自動的に整理する、教師なし学習である「Topic modeling」もお使いいただけます。

Read More

Amazon EC2でのDeep Learningのためのダイナミックトレーニングの紹介

本日(2018/11/27)、Deep Learningモデルのためのダイナミックトレーニング(Dynamic Training: DT)を発表することに興奮しています。DTを使用すると、Deep Learningの実務者は、クラウドの弾力性と規模の経済性を活用して、モデルトレーニングのコストと時間を削減できます。DTの最初のリファレンス実装は、Apache MXNetに基づいており、オープンソースで Dynamic Training with Apache MXNet に公開されています。このブログ記事は、DTの概念、実現したトレーニングの結果やトレーニングへの活用方法を紹介します。

Read More

Amazon Rekognition が、顔の検出、分析、認識機能の更新を発表

本日、当社は顔の検出、分析、認識機能の更新を発表いたします。これらの更新により、画像からより多くの顔を検出し、より正確な顔のマッチングを実行し、画像内の顔から年齢、性別、感情の属性を取得する能力が向上します。Amazon Rekognition の顧客は、本日より、追加コストなしでこれらの各機能拡張を使用できます。機械学習の経験は必要ありません。 「顔検出」は、「この画像には顔がありますか?」という質問に答えようとします。 現実世界の画像では、さまざまな側面が、高い精度で顔を検出するシステムの能力に影響を与える可能性があります。そうした側面としては、頭部の動きおよび/またはカメラの動きによるポーズの変化、前景または背景の物体 (前景にいる他の人の帽子、髪、手で覆われた顔など)によるオクルージョン、照明の変化 (低いコントラストや影など)、顔が白っぽくなる明るい照明、ノイズが多かったり不鮮明である顔につながる低品質と解像度、カメラやレンズ自体の歪みなどがあります。こうした問題は、未検出 (顔が検出されなかった) または誤検出 (画像領域に顔がないのに顔として検出される) として現れます。たとえば、ソーシャルメディアのさまざまなポーズでは、カメラのフィルター、照明、オクルージョン (「フォトボム」など) が一般的です。金融サービスの顧客の場合、多要素認証および不正防止ワークフローの一部としての顧客 ID の検証で、高解像度の自撮り (顔画像) を、写真 ID 文書 (パスポートや運転免許証など) のより低解像度で、小さく、しばしばぼやけた顔画像と照合させることが必要になります 。また、多くの顧客は、カメラが明るい光に向いている画像から低コントラストの顔を検出して認識しなければならなりません。 最新の更新により、Amazon Rekognition は前に説明した最も困難な条件にある画像で、以前は見逃されていた顔の 40% を検出できるようになりました。同時に、誤検出の割合は 50% 削減されています。つまり、ソーシャルメディアアプリなどの顧客は、高い確度で一貫して信頼できる検出 (未検出と誤検出が少ない) が可能になり、自動化されたプロフィール写真レビューなどのユースケースでより良い顧客経験を提供できます。さらに、顔認識は、大規模な顔のコレクションを検索する場合に、以前のモデルと比較して 30% より正確な「最良の」一致 (最も類似した顔) を返します。これにより、不正防止などのアプリケーションでより良い検索結果を得ることができます。顔照合では、さまざまな照明、ポーズ、外観でより一貫性のある類似性スコアを取得できるようになり、ID 照合などのアプリケーションでより高い信頼性のしきい値を使用して誤った一致を回避し、人間による確認を減らすことができます。いつものように、市民の自由や顧客の感情が関係するユースケースで照合の正確さが重要な場合、ベストプラクティス、より高い信頼水準 (少なくとも99%) を使用し、必ず人間による確認を含めることをお勧めします。 それでは、いくつかの画像を見て、Amazon Rekognition が制約のない環境でキャプチャされた難しい画像のさまざまな側面をどのように処理するかを確認しましょう。 ポーズのバリエーション この問題は、急なカメラアングル (顔の上または下から撮影されたショットなど)、顔を横から見たショット、被写体が遠ざかっている場合に発生します。この問題は、ソーシャルメディアの写真 (例えば、被写体が遠くを見ているときなど)、自撮り、ファッションの写真撮影でよく見られます。顔検出アルゴリズムは、多くの場合、顔の半分以下しか見えないか、顔が通常ではない確度で傾いている (逆さまになるなど) 場合に、顔を検出することが困難です。 画像 1: 横から見た顔 画像 2: 様々な角度でカメラを見下ろす顔 画像 3: […]

Read More