Amazon Web Services 한국 블로그

Julien Simon

Author: Julien Simon

As an Artificial Intelligence & Machine Learning Evangelist for EMEA, Julien focuses on helping developers and enterprises bring their ideas to life.

AWS Systems Manager – 신규 Incidet Manager를 통해 IT 긴급 요청 처리하기

IT 엔지니어는 애플리케이션 및 인프라를 구축하는 데 투입하는 기술과 관리에 자부심을 갖고 있습니다. 그러나 인정하기는 싫지만 100% 가동 시간과 같은 것은 없습니다. 어느 시점이 되면 모든 것이 실패하게 되며 종종 가능한 가장 최악의 시간에 발생해 망가진 저녁 식사나 생일 파티 또는 결혼 기념일로 이어지곤 합니다. 호출기가 요란하게 울리면 담당 엔지니어는 서비스를 복원하기 위해 허둥대며 이때는 […]

Read More

Amazon SageMaker 인스턴스 가격 인하 및 Savings Plans를 통해 기계 학습 비용 절감

AWS re:Invent 2017에서 출시된 Amazon SageMaker는 이미 수만 명의 고객이 AWS에서 기계 학습(ML) 워크플로를 신속하게 구축하고 배포할 수 있도록 도와준 완전 관리형 서비스입니다. 고객이 비용 대비 ML 효과를 극대화할 수 있도록 Managed Spot Training, Multi-Model Endpoints, Amazon Elastic Inference 및 AWS Inferentia와 같은 일련의 비용 최적화 서비스 및 기능을 추가했습니다. 실제로 고객은 자체 관리형 Amazon […]

Read More

신규 EC2 Serial Console 기능 출시 – 부팅 및 네트워킹 문제 해결

정식 서비스 중 발생하는 문제 해결은 시스템 및 네트워크 관리자의 주요 책임 중 하나입니다. 사실 저에게는 항상 이것이 인프라 엔지니어링에서 가장 흥미로운 부분 중 하나였습니다. 당면한 문제에 필요한 만큼 깊이 파고들면 결국 문제를 해결할 수 있을 뿐만 아니라 그 과정에서 보통은 알 수 없는 많은 것을 배우게 됩니다. 운영 체제는 확실히 그러한 기회를 제공합니다. 시간이 […]

Read More

새로운 기능 – Amazon SageMaker Debugger 기반 기계 학습 훈련 작업 프로파일링

오늘 Amazon SageMaker Debugger가 기계 학습 모델을 프로파일링하여 하드웨어 리소스 사용으로 인한 훈련 문제를 훨씬 쉽게 식별하고 수정할 수 있음을 발표하게 되어 매우 기쁩니다. 다양한 비즈니스 문제에 대해 인상적인 성능을 발휘하고 있지만 기계 학습(ML)은 여전히 신비한 주제입니다. 이를 바로 잡는 것은 과학, 장인 정신(일부는 마법사라고 말할 것입니다), 때로는 행운의 연금술입니다. 특히 모델 훈련은 데이터 세트의 […]

Read More

새로운 기능 – Amazon SageMaker 관리형 데이터 병렬 처리를 통해 대규모 데이터 세트 훈련 간소화

오늘 Amazon SageMaker가 수백 또는 수천 기가바이트의 데이터 세트에 대한 모델을 더 쉽게 훈련할 수 있는 새로운 데이터 병렬 처리 라이브러리를 지원한다는 것을 발표하게 되어 기쁩니다. 데이터 세트와 모델이 점점 커지고 정교해짐에 따라 대규모 분산 훈련 작업을 수행하는 기계 학습(ML) 실무자는 Amazon Elastic Compute Cloud (EC2) p3 및 p4 인스턴스와 같은 강력한 인스턴스를 사용하는 경우에도 […]

Read More

새로운 기능 – Amazon SageMaker 기반 수십억 개의 파라미터로 딥 러닝 모델 훈련 간소화

오늘 Amazon SageMaker에서 이전에 하드웨어 한계로 인해 훈련이 어려웠던 매우 큰 딥 러닝 모델의 훈련을 단순화 할 수 있는 기능을 발표하게 되어 매우 기쁩니다. 지난 10년 동안 딥 러닝(DL)이라는 기계 학습 관련 기술은 세계에 큰 반향을 일으켰습니다. 신경망을 기반으로 DL 알고리즘은 이미지, 비디오, 음성 또는 텍스트와 같은 방대한 양의 비정형 데이터에 숨겨진 정보 패턴을 추출하는 […]

Read More

Amazon SageMaker Edge Manager – 엣지 디바이스에서 기계 학습 모델 운영 간소화

오늘 Amazon SageMaker Edge Manager를 발표하게 되어 기쁩니다. Amazon SageMaker의 새로운 기능으로 엣지 디바이스 플릿에서 기계 학습 모델을 간편하게 최적화, 보안, 모니터링 및 유지 관리합니다. 엣지 컴퓨팅은 정보 기술 분야에서 가장 흥미로운 개발 중 하나입니다. 실제로 컴퓨팅, 스토리지, 네트워킹 및 배터리 기술의 지속적인 발전으로 인해 조직에서는 제조, 에너지, 농업, 의료 등 다양한 산업 애플리케이션을 위해 […]

Read More

Amazon SageMaker Clarify – 데이터 편향성 감지를 통한 기계 학습 모델의 투명성 개선

오늘 Amazon SageMaker Clarify를 발표하게 되어 매우 기쁩니다. Amazon SageMaker의 새로운 기능인 Clarify는 이해관계자와 고객에게 모델의 동작을 설명함으로써 기계 학습(ML) 모델의 바이어스를 감지하고 투명성을 개선하는 데 도움이 됩니다. 데이터 세트에 존재하는 통계 패턴을 학습하는 훈련 알고리즘에 의해 ML 모델이 구축되기 때문에 몇 가지 질문이 즉시 떠오릅니다. 첫째, ML 모델이 특정 예측을 제시하는 이유를 설명할 수 […]

Read More

Amazon SageMaker Pipelines – 기계 학습 프로젝트에 DevOps 자동 배포 기능 제공

오늘 Amazon SageMaker의 새로운 기능인 Amazon SageMaker Pipelines를 출시합니다. 이 기능을 사용하면 데이터 사이언티스트 및 엔지니어가 전체 기계 학습 파이프라인을 쉽게 구축하고 자동화하여 확장할 수 있습니다. 기계 학습(ML)은 본질적으로 실험적이며 예측할 수 없습니다. 여러 가지 많은 방법으로 며칠 또는 몇 주에 걸쳐 데이터를 탐색하고 처리하며, 귀중한 보석을 찾기 위해 반짝이는 정동석을 깨뜨리려고 합니다. 그리고 다양한 […]

Read More

Amazon SageMaker Feature Store – 기계 학습 피처 저장, 검색 및 공유 기능 제공

오늘 Amazon SageMaker의 새로운 기능인 Amazon SageMaker Feature Store를 소개하게 되어 정말 기쁩니다. 이 기능을 사용하면 데이터 사이언티스트와 기계 학습 엔지니어는 훈련 및 예측 워크플로에서 사용되는 준비된 데이터를 쉽고 안전하게 저장, 검색 및 공유할 수 있습니다. 기계 학습(ML) 모델을 훈련하는 올바른 알고리즘 선택의 중요성 때문에 숙련된 실무자는 고품질 데이터 제공의 중요성을 잘 알고 있습니다. 데이터 […]

Read More