Amazon Web Services ブログ

Category: Amazon SageMaker

AWS 上での LLM ベースの基盤モデルとスケーラブルな MLOps による時系列予測

このブログ記事では、売上予測を例にテスト用に作成した合成データを使って Chronos を Amazon SageMaker Pipeline に統合するプロセスを案内します。これにより、最小限のデータで正確かつ効率的な予測が可能になります。ファインチューニングからデプロイメントまでの全ワークフローをオーケストレーションする機能の使い方を学びます。この解説を通じて、開発プロセスを合理化し、Chronos をあらゆる時系列データに適用して、予測アプローチを変革する準備が整います。

AWS Weekly Roundup: 新しいアジアパシフィックリージョン、DynamoDB の更新情報、Amazon Q Developer など (2025 年 1 月 13 日)

2025 年の第 2 週を迎えるにあたり、中国では旧正月の準備の始まりを意味する、伝統的な祝日である臘八節 ( […]

Amazon SageMaker Canvas で製造データの異常を検出

Amazon SageMaker Canvas は、領域の専門家にノーコードインターフェースを提供することで、製造業のジレンマを解決します。データサイエンスの経験が十分になくても、予測、分類、回帰モデルなどの強力な分析や、ML モデルを作成できます。また、作成後、モデルを ML および MLOps 専門家に展開して共有することもできます。この記事では、SageMaker Canvas を使用して、必要な特徴量をデータから選択し、整理する方法を説明します。また、SageMaker Canvas のノーコード機能を使用したモデルチューニングの機能を使って、異常検出のための予測モデルをトレーニングする方法を紹介します。

生成 AI を活用してプレイヤーやプレスのゲームレビューを分析する

ゲーム開発者、ゲームスタジオ、パブリッシャーは、ゲームレビューの急激な増加と多様化によって、レビューの評価に大きな課題を抱えています。こういった変化に効率的に対処して最も重要な問題に注力できるよう、フィードバックを分類し優先順位付けする強固なシステムを開発者は必要としています。これは特に小規模なスタジオにとって課題となっており、限られたスタッフと財務リソースで大量のフィードバックを管理することに苦労しています。

この記事では、Amazon Bedrock を使用してゲームレビューのアップロード、処理、分析、要約を行うことができるサーバーレスソリューションの構築方法を説明します。この例ではゲームレビューに焦点を当てていますが、このアプローチは他の分野のレビューの分析と要約にも応用できます。