Amazon Web Services ブログ

Category: Amazon Kinesis

AWS上でApache Flinkを使用してリアルタイムストリーム処理パイプラインを構築する

今日のビジネス環境では、多様なデータソースが着実に増加していく中で、データが継続的に生成されています。したがって、このデータを継続的にキャプチャ、格納、および処理して、大量の生データストリームを実用的な洞察に素早く繋げることは、組織にとって大きな競争上のメリットになっています。 Apache Flinkは、このようなストリーム処理パイプラインの基礎を形成するのに適したオープンソースプロジェクトです。ストリーミングデータの継続的な分析に合わせたユニークな機能を提供しています。しかし、Flinkを基にしたパイプラインの構築と維持には、物理​​的なリソースと運用上の努力に加え、かなりの専門知識が必要になることがよくあります。 この記事では、Amazon EMR、Amazon Kinesis、Amazon Elasticsearch Serviceを使用してApache Flinkを基にした、一貫性のあるスケーラブルで信頼性の高いストリーム処理パイプラインの参照アーキテクチャの概要を説明します。 AWSLabs GitHubリポジトリは、実際に参照アーキテクチャを深く理解するために必要なアーティファクトを提供します。リソースには、サンプルデータをAmazon Kinesisストリームに取り込むプロデューサアプリケーションと、リアルタイムでデータを分析し、その結果をAmazon ESに可視化するためのFlinkプログラムが含まれています。

Read More

AWS KMSを使用してAmazon Kinesisレコードを暗号化および復号する

コンプライアンスやデータセキュリティの要件が厳しいお客様は、AWSクラウド内での保存中や転送中など、常にデータを暗号化する必要があります。この記事では、保存中や転送中もレコードを暗号化しながら、Kinesisを使用してリアルタイムのストリーミングアプリケーションを構築する方法を示します。 Amazon Kinesisの概要 Amazon Kinesisプラットフォームを使用すると、要求に特化したストリーミングデータを分析または処理するカスタムアプリケーションを構築できます。 Amazon Kinesisは、ウェブサイトクリックストリーム、金融取引、ソーシャルメディアフィード、ITログ、トランザクショントラッキングイベントなど、何十万ものソースから1時間につき数テラバイトのデータを連続的にキャプチャして保存できます。 Amazon Kinesis Streamsは、HTTPSを使用してクライアント間でデータを暗号化し、転送されているレコードの盗聴を防止します。ただし、HTTPSで暗号化されたレコードは、データがサービスに入ると解読されます。このデータは24時間保管され(最大168時間まで延長可能)、アプリケーションの処理、再処理、処理遅延の際の巻き取りに対して十分なゆとりが確保されています。 ウォークスルー Amazon Kinesis Producer Library(KPL)、Kinesis Consumer Library(KCL)、AWS KMS、aws-encryption-sdkを使用してサンプルKinesisプロデューサおよびコンシューマアプリケーションへの暗号化と復号を行います。この記事で使用されているKinesisレコードの暗号化と復号に使用される方法とテクニックは、あなたのアーキテクチャに簡単に再現できます。いくつか制約があります: AWSは、暗号化と復号のためのKMS APIリクエストの使用料金を請求します。詳しくは、「AWS KMSの料金」を参照してください。 Amazon Kinesis Analyticsを使用して、このサンプルアプリケーションのクライアントによって暗号化されたレコードのAmazon Kinesis Streamにクエリすることはできません。 アプリケーションでレイテンシの低い処理が必要な場合は、レイテンシに多少の上乗せがあることに注意してください。 次の図は、ソリューションのアーキテクチャを示しています。

Read More

Amazon Kinesis Analytics - SQL を使用してリアルタイムにストリーミングデータを処理

ご存知の通り、Amazon Kinesis では、AWS Cloud でリアルタイムにストリーミングデータを操作するプロセスが大幅に簡素化されています。独自のプロセスおよび短期のストレージインフラストラクチャを設定および実行する代わりに、ただ Kinesis ストリームまたは Kinesis Firehose を作成し、そこにデータを流し込むように設定してから、それを処理または分析するアプリケーションを構築するのみです。Kinesis ストリームと Kinesis Firehose を使用してストリーミングデータソリューションを構築するのは比較的簡単なのですが、さらに簡素化したいと考えました。作業開発者、データサイエンティスト、または SQL 開発者であるかどうかにかかわらず、お客様がウェブアプリケーション、テレメトリ、およびセンサーレポートの大量のクリックストリームを、接続されたデバイス、サーバーログなどからすべてリアルタイムに標準クエリ言語を使用して処理できるようにしたいと考えました。 Amazon Kinesis Analytics 本日より、Amazon Kinesis Analytics がご利用いただけるようになりました。ストリーミングデータに対して SQL クエリを継続的に実行し、データが届くと同時にフィルタリング、変換、および集約できるようになりました。インフラストラクチャで時間を無駄にするのではなく、データの処理とそこからのビジネス価値の抽出に注力できます。強力なエンドツーエンドのストリームプロセスパイプラインを 5 分で構築できます。SQL クエリより複雑なものを作成する必要はありません。 データベーステーブルに対する一連の SQL クエリの実行を考慮する場合、クエリは通常、非常に素早く追加および削除されるのに対して、データはほぼ静的なままです。常に行が追加、変更および削除されますが、これは特定の時点で実行する単一のクエリを考慮する際、一般的には関係ありません。Kinesis Analytics のクエリをストリーミングデータに対して実行すると、このモデルと正反対のことが生じます。クエリは長時間実行され、新しいレコード、監視、またはログエントリが届くと同時に、データは毎秒何度も変化します。一度この仕組みを把握すると、クエリプロセスモデルが非常に理解しやすいことが分かります。レコードが届くと同時に処理する、持続的なクエリを構築するのです。所定のクエリで処理されるレコードのセットを制御するには、プロセス「ウィンドウ」を使用します。Kinesis Analytics では、3 つの異なるタイプのウィンドウがサポートされています。 タンブリングウィンドウは定期的なレポートに使用されます。タンブリングウィンドウを使用して、時間の経過と共にデータをまとめることができます。おそらく毎秒数千~数百万ものリクエストを受信するので、1 分ごとの受信数を知りたいと思うでしょう。現在のタンブリングウィンドウが閉じると、その後に次のウィンドウが開始します。ウィンドウがいっぱいになるたびに、新しい結果が生成されます。 スライディングウィンドウは、モニタリングとその他のタイプのトレンド検出に使用されます。例えば、スライディングウィンドウを使用してリアルタイムで動くエラー率の平均をコンピューティングできます。レコードがウィンドウに入り、レコードがその中にあるかぎり結果に反映され、ウィンドウは進行します。新しいレコードがウィンドウに入るたびに、新しい結果が生成されます。ウィンドウのサイズを調整して、結果の精度を制御できます。 カスタムウィンドウは、適切なグループが厳密に時間に基づいていない場合に使用されます。クリックストリームデータまたはサーバーログを処理している場合、カスタムウィンドウを使用してセッション化として知られるアクションを実行できます。つまり、各ユーザーが実行する最初と最後のアクション (受信データ内のセッション ID により識別される) によって、各クエリをバインドできます。各ユーザーが閲覧したページ数またはサイトで費やした時間をコンピューティングするクエリを作成できます。 これらすべてはいくらか複雑に聞こえるかもしれませんが、実装するのは非常に簡単です。Kinesis Analytics では、受信レコードのサンプルを分析し、最適なスキーマを提案します。それをそのまま使用することも、微調整して実際のデータモデルをさらに反映することもできます。スキーマが定義されると、組み込み SQL エディターを使用できます (ライブデータに対する構文チェックと簡単なテストを含む)。クエリの結果を Amazon S3、Amazon Redshift、Amazon Elasticsearch Service、または […]

Read More

Amazon Kinesis アップデート – Amazon Elasticsearch Service との統合、シャード単位のメトリクス、時刻ベースのイテレーター

Amazon Kinesis はストリーミングデータをクラウド上で簡単に扱えるようにします。 Amazon Kinesis プラットフォームは3つのサービスから構成されています:Kinesis Streams によって、開発者は独自のストリーム処理アプリケーションを実装することができます;Kinesis Firehose によって、ストリーミングデータを保存・分析するための AWS へのロード処理がシンプルになります;Kinesis Analytics によって、ストリーミングデータを標準的な SQL で分析できます。 多くの AWS のお客様が、ストリーミングデータをリアルタイムに収集・処理するためのシステムの一部として Kinesis Streams と Kinesis Firehose を利用しています。お客様はこれらが完全なマネージドサービスであるがゆえの使い勝手の良さを高く評価しており、ストリーミングデータのためのインフラストラクチャーを独自に管理するかわりにアプリケーションを開発するための時間へと投資をしています。 本日、私たちは Amazon Kinesis Streams と Amazon Kinesis Firehose に関する3つの新機能を発表します。 Elasticsearch との統合 – Amazon Kinesis Firehose は Amazon Elasticsearch Service へストリーミングデータを配信できるようになりました。 強化されたメトリクス – Amazon Kinesis はシャード単位のメトリクスを CloudWatch へ毎分送信できるようになりました。 柔軟性 – Amazon […]

Read More

Amazon Kinesis エージェントの更新情報 – 新しいデータ事前処理機能

Amazon Kinesis エージェント用の新しいデータ事前処理機能について同僚の Ray Zhu が説明したゲスト投稿を以下に掲載します。 – Jeff Amazon Kinesis エージェントは、Amazon Kinesis Streams や Amazon Kinesis Firehose にデータを信頼性の高い方法で簡単に送信できるようにする、スタンドアロンの Java ソフトウェアアプリケーションです。エージェントはファイルセットを監視して新しいデータを検出し、Kinesis Streams または Kinesis Firehose に連続的に送信します。ファイルのローテーション、チェックポイント処理、および失敗時の再試行も処理します。また、Amazon CloudWatch もサポートするので、エージェントからのデータフローの入念な監視やトラブルシューティングも行えます。 Kinesis エージェントを使用したデータ事前処理 今回、データ事前処理機能がエージェントに追加され、ユーザーはデータを Kinesis Streams または Kinesis Firehose に送信する前に、適切に書式設定できます。 この投稿の記述時点で、エージェントは次の 3 つの処理オプションをサポートしています。エージェントはオープンソースなので、ユーザーはこれらの処理オプションを開発したり、拡張したりできます。 SINGLELINE – このオプションは、改行文字と、行頭および行末のスペースを削除して、複数行のレコードを単一行のレコードに変換します。 CSVTOJSON – このオプションは、区切り文字で区切られた書式から JSON 書式にレコードを変換します。 LOGTOJSON – このオプションは、一般的に使用されている複数のログ書式を JSON 書式に変換します。現在サポートされているログ書式は、Apache Common Log、Apache Combined […]

Read More