Amazon Web Services 한국 블로그

Category: Artificial Intelligence

Amazon SageMaker Clarify – 데이터 편향성 감지를 통한 기계 학습 모델의 투명성 개선

오늘 Amazon SageMaker Clarify를 발표하게 되어 매우 기쁩니다. Amazon SageMaker의 새로운 기능인 Clarify는 이해관계자와 고객에게 모델의 동작을 설명함으로써 기계 학습(ML) 모델의 바이어스를 감지하고 투명성을 개선하는 데 도움이 됩니다. 데이터 세트에 존재하는 통계 패턴을 학습하는 훈련 알고리즘에 의해 ML 모델이 구축되기 때문에 몇 가지 질문이 즉시 떠오릅니다. 첫째, ML 모델이 특정 예측을 제시하는 이유를 설명할 수 […]

Amazon HealthLake – 클라우드 기반 의료 데이터 저장, 변환 및 분석 서비스 제공

의료 기관은 가족력과 임상 관찰부터 진단 및 약물 치료에 이르기까지 매일 방대한 양의 환자 정보를 수집합니다. 그리고 더 나은 의료 서비스를 제공하기 위해 환자의 건강 정보를 포괄적으로 이해하고자 이러한 모든 데이터를 사용합니다. 현재 이 데이터는 다양한 시스템(전자 의료 기록, 실험실 시스템, 의료 이미지 리포지토리 등)에 분산되어 있으며 수십 개의 호환되지 않는 형식으로 존재합니다. Fast Healthcare […]

Amazon Lookout for Metrics 미리보기 – 비즈니스 상태를 모니터링하기 위한 이상 탐지 서비스

기계 학습(ML)으로 지표에서 이상을 탐지하여 ML 경험이 없어도 사전에 비즈니스 상태를 모니터링하고 문제를 진단하며 빠르게 기회를 찾을 수 있도록 지원하는 새로운 서비스, Amazon Lookout for Metrics를 소개합니다. Lookout for Metrics는 Amazon이 오탐을 줄이면서 데이터에서 찾기 어려운 이상한 변경 사항을 탐지하는 데 사용하던 기술을 동일하게 사용합니다. 또한 유사한 결과를 그룹화하고 심각도별로 순위를 매기며 이상의 근본 원인을 […]

Amazon SageMaker Pipelines – 기계 학습 프로젝트에 DevOps 자동 배포 기능 제공

오늘 Amazon SageMaker의 새로운 기능인 Amazon SageMaker Pipelines를 출시합니다. 이 기능을 사용하면 데이터 사이언티스트 및 엔지니어가 전체 기계 학습 파이프라인을 쉽게 구축하고 자동화하여 확장할 수 있습니다. 기계 학습(ML)은 본질적으로 실험적이며 예측할 수 없습니다. 여러 가지 많은 방법으로 며칠 또는 몇 주에 걸쳐 데이터를 탐색하고 처리하며, 귀중한 보석을 찾기 위해 반짝이는 정동석을 깨뜨리려고 합니다. 그리고 다양한 […]

Amazon SageMaker Feature Store – 기계 학습 피처 저장, 검색 및 공유 기능 제공

오늘 Amazon SageMaker의 새로운 기능인 Amazon SageMaker Feature Store를 소개하게 되어 정말 기쁩니다. 이 기능을 사용하면 데이터 사이언티스트와 기계 학습 엔지니어는 훈련 및 예측 워크플로에서 사용되는 준비된 데이터를 쉽고 안전하게 저장, 검색 및 공유할 수 있습니다. 기계 학습(ML) 모델을 훈련하는 올바른 알고리즘 선택의 중요성 때문에 숙련된 실무자는 고품질 데이터 제공의 중요성을 잘 알고 있습니다. 데이터 […]

Amazon SageMaker Data Wrangler – 기계 학습을 위해 데이터를 준비하는 시각적 인터페이스 제공

오늘 Amazon SageMaker의 새로운 기능인 Amazon SageMaker Data Wrangler를 소개하게 되어 정말 기쁩니다. 이 기능을 사용하면 데이터 사이언티스트와 엔지니어가 시각적 인터페이스를 사용하여 기계 학습(ML) 애플리케이션을 위한 데이터를 쉽고 빠르게 준비할 수 있습니다. 데이터 사이언티스트와 ML 엔지니어 그룹에 실제로 ML 문제를 연구하는 데 얼마나 많은 시간을 할애하는지 물어볼 때마다 이들은 단체로 한숨을 쉰 후에 “운이 좋으면 […]

Amazon SageMaker JumpStart로 사전 구축된 모델과 기계 학습 솔루션 액세스 단순화

오늘 Amazon SageMaker JumpStart 출시 소식을 발표할 수 있게 되어 무척 기쁩니다. 이는 Amazon SageMaker의 한 기능으로, 클릭 한 번으로 인기 모델 컬렉션(“모델 동물원”으로도 알려진)과 공통적인 사용 사례를 해결하는 전체적 솔루션에 액세스하여 기계 학습 워크플로를 가속화할 수 있습니다. 최근 몇 년 동안, 기계 학습(ML)은 업무 프로세스를 개선하고 자동화하는 데 중요한 기술이라는 것이 입증되었습니다. 실제로 과거 […]

Amazon CodeGuru의 새로운 기능 – Python 지원, 보안 감지기, 메모리 프로파일링

Amazon CodeGuru는 코드 품질을 개선하는 데 도움이 되는 개발자 도구이며 크게 다음 두 가지 구성 요소로 구성됩니다. CodeGuru Reviewer는 프로그램 분석과 기계 학습을 이용해서 코드 내에서 발견하기 어려운 잠재적 오류를 찾아내고 추천하는 개선 방법을 제공합니다. CodeGuru Profiler는 라이브 애플리케이션에서 런타임 성능 데이터를 수집하고, 시각화 및 권고 사항을 통해 애플리케이션 성능을 세밀하게 조정하도록 돕습니다. 오늘은 새로운 […]

re:Invent 2020 라이브 블로그: 기계 학습 기조 연설

AWS 최고 에반젤리스트 Jeff Barr 및 개발자 애드보케이트 Martin Beeby, Steve Roberts가 진행하는 라이브 블로그 최초의 기계 학습 기조 연설을 확인해보세요. Amazon ML/AI 부문 부사장인 Swami Sivasubramanian이 AWS 기계 학습의 최신 개발 및 출시 정보, 새로운 기술 데모 및 고객의 통찰력을 공유합니다. 2020년 12월 8일(화요일) 오전 7시 45분부터 10시(PST)부터 함께 참여해주세요! 라이브 블로그는 영문 블로그 […]

Amazon DevOps Guru – ML 기반 애플리케이션 오류 및 수정 사항 예측 서비스

오늘, 개발자 및 운영자가 운영 문제를 자동으로 감지하고 수정 사항을 추천하여 애플리케이션 가용성을 쉽게 개선할 수 있는 완전 관리형 운영 서비스인 Amazon DevOps Guru를 발표합니다. DevOps Guru는 Amazon.com 및 Amazon Web Services(AWS)에서 수년간 우수한 운영을 통해 얻은 정보를 기반으로 하는 기계 학습을 적용하여 애플리케이션 지표, 로그, 이벤트 등의 데이터를 자동으로 수집하고 분석함으로써 정상적인 운영 패턴에서 […]