Amazon Web Services ブログ

Localization Team

Author: Localization Team

AWS 深層学習 AMI は TensorFlow と Microsoft Cognitive ツールキット用の Volta GPU に対するより高速のトレーニングを提供します

Ubuntu と Amazon Linux の AWS 深層学習 AMI に最新バージョンの TensorFlow (1.5) と Microsoft Cognitive ツールキット (2.4) が含まれます。 これらのフレームワークは、NVIDIA CUDA 9 と cuDNN 7 ドライバーのサポートを提供します。これにより、ユーザーは Amazon EC2 P3 インスタンスに対応する V100 Volta GPU によりサポートされる複合精度のトレーニングを利用できるようになります。当社の Volta における TensorFlow 1.5 のテストでは、ResNet-50 ベンチマークを合成 ImageNet データを使って FP16 モードの p3.8xlarge インスタンスでトレーニングすると、TensorFlow 1.4.1 でのトレーニングよりも 1.8 倍高速になりました。 深層学習フレームワークの最新の更新 深層学習 AMI は、個別のConda ベースの仮想環境で、深層学習フレームワークの最新の正式バージョンに対して、事前構築された pip バイナリを提供します。 […]

Read More

ご利用の WordPress ブログに新しい Amazon Polly の声を

私は最初、皆さまに 2016 年後半に Polly について、 「Amazon Polly – 24 か国語 47 種類の声で音声変換」の投稿でお話ししました。 AWS re:Invent が起動した後、韓国語、5 種類の新しい声のサポートを追加し、Polly を aws パーティションのすべてのリージョンで利用可能にしました。また、ウィスパリング、スピーチマーク、ティンバーエフェクト、および ダイナミックレンジ圧縮などの機能を備えています。 新しい WordPress プラグイン 当社は今日、お客様のブログ投稿の高品位音声バージョンを作成するために、WordPress プラグインを使い始めています。Amazon Pollycast と呼ぶ機能を使用して、投稿中やポッドキャスト内の音声にアクセスできます! 両方のオプションにより、お客様のコンテンツにより容易にアクセスできるようになり、より広い対象者に達することを支援できます。このプラグインは、AWS アドバンストテクノロジーパートナーである WP Engine の AWS チームの共同作業でした。 ご覧の通り、このプラグインのインストールと構成は容易です。お使いのインフラストラクチャまたは AWS 上で実行する WordPress のインストレーションと共に使用できます。いずれの方法でも、Polly のすべての音声に幅広い構成オプションと共にアクセスできます。 生成される音声 (各投稿の MP3 ファイル) は、WordPress コンテンツと共に保存するか、Amazon Simple Storage Service (S3) に保存し、その際に、Amazon CloudFront 経由のコンテンツ配布のための任意のサポートが利用できます。 プラグインのインストール 既存の […]

Read More

New – DynamoDB の保存時の暗号化

AWS re:Invent 2017 では、Werner は対象者に対して、次のように勧めました。「誰も見ていないようにダンスをして、誰もがしているように暗号化してください。」 AWS チームは常に、機密データを保護し、またコンプライアンスの目標を達成するために支援することを容易にする機能を追加したいと考えています。たとえば、2017 年に当社は SQS と EFS に対して保存時の暗号化を開始し、S3 に対して追加の暗号化オプション、さらに Kinesis データストリームのサーバー側の暗号化を開始しました。 今日、Amazon DynamoDB に対して保存時の暗号化の導入に、別のデータ保護オプションを提供しています。新規テーブルを作成するときに暗号化を有効にするだけで、後は DynamoDB が行います。お使いのデータ (テーブル、ローカルセカンダリインデックス、グローバルセカンダリインデックス) は、AES-256 およびサービスデフォルトのAWS Key Management Service (KMS) キーを使用して暗号化されます。暗号化はストレージオーバーヘッドを追加せず、完全に透過的です。以前のように、アイテムを挿入、クエリ、スキャン、および削除できます。チームは暗号化を有効にして、暗号化した DynamoDB テーブルで異なるいくつかのワークロードで実行した後、レイテンシーで変更を観察しませんでした。 暗号化テーブルの作成 AWS マネジメントコンソール、API (CreateTable)、または CLI (create-table) から暗号化テーブルを作成できます。私はコンソールを使用します。私は通常通り、次のように名前を入力して、プライマリーキーを設定します。 先に進む前に、[デフォルト設定の使用] をオフにして、[暗号化] セクションまで下方にスクロールして、[暗号を有効化] をオンにします。次に、[作成] をクリックすると、私のテーブルが暗号化形式で作成されます。 一目でテーブルの暗号化設定を確認することができます。 コンプライアンスチームが、DynamoDB でキーを使ってデータを暗号化する方法を尋ねられたら、AWS CloudTrail トレールを作成して、アイテムを挿入し、テーブルをスキャンして AWS KMS API へのコールを確認することができます。以下がトレールからの抽出です。 { “eventTime”: “2018-01-24T00:06:34Z”, “eventSource”: […]

Read More

Amazon Lex 対話ボックスの対応を強化

AWS マネジメントコンソールから Amazon Lex 対話ボットに応答を直接追加できるようになりました。ユーザーと活発に説得力のある対話を行うための応答メッセージを使用しましょう。 応答を使用する 応答はボットによるやり取りの最終要素であり、ボットのやり取りがすべて行われたあとに、ユーザーに表示されます。 応答にはお別れの挨拶といったシンプルなものから、メッセージを表示して別のやり取りにつながる様々なボタンの付いた画像のカルーセル表示などがあります。  応答は一部の事例ではやり取りの主要な要素となることもあります。たとえば、ユーザーを別のボット機能へ導くのに役立つやりとりなどがその例です。 応答は事前に定義され、デベロッパーによって作成されたメッセージのグループから動的に選択されるメッセージで構成されています。  たとえば、予約ボットでは最初のメッセージグループとして、ボットがユーザーに使用できる様々な挨拶(「こんにちは」、「いらっしゃいませ」、「お待たせいたしました」)などを含めることができます。2 つ目のメッセージグループには様々な自己紹介メッセージを指定できます。たとえば、「私は予約用ボットです」、「こちらは予約用ボットです」など。 3つ目のメッセージグループにはやり取りするための言葉を指定します。「レンタカーのご予約、ホテルのご予約はお任せください」など。  Amazon Lex は各メッセージグループの各メッセージを動的に使用して会話の受け答えを構築します。たとえば、会話の一例として次のメッセージをご覧ください。 会話例をもう 1 つご覧ください。 応答は簡単なもので、ユーザーが別の表現を使って答え、それにより別のやり取りがトリガーされるものを使用します。  たとえば、ユーザーが「レンタカー」と答えるとします。「レンタカー」がレンタカーを支援するやり取りの対話に一致すれば、そのやり取りが同時にトリガーされます。 応答には次に示すコンポーネントを 3 件まで指定できます。 メッセージ (いずれの応答にも 1 件以上のメッセージが必要) 応答の質問に対するユーザーの回答が「いいえ」であれば、終了メッセージ 応答カード 応答は Amazon Lex コンソール上で、Amazon Lex SDK を介して実行できます。  コンポーネントを見ながら応答の作成方法をご紹介します。 メッセージ Amazon Lex コンソールでは、応答セクションの最初のコンポーネントはメッセージまたはメッセージグループです。エディターではメッセージグループはこのように表示されます。 より自然な会話の流れを作るのに役立つのであれば、1 件の応答に 1 つまたは複数のメッセージグループを作成できます。  メッセージはメッセージグループごとにマークが付いた状態 (メッセージグループ 1、メッセージグループ 2 など) でクライアントに送信されるため、それぞれのグループはサポート対象の Amazon Lex チャンネルに 1 行ずつ自動的に表示されます。  […]

Read More

Model Server for Apache MXNet、ONNX サポートと Amazon CloudWatch の組み込みを開始

AWS は、大規模な予測を行うための深層学習モデルをパッケージ化してサービスを提供するオープンソースライブラリである Model Server for Apache MXNet (MMS) のバージョン 0.2 をリリースしました。それにより、Open Neural Network Exchange (ONNX) 形式でモデルを提供し、ダッシュボードとアラームを作成できる Amazon CloudWatch に直接、運用メトリックを公開できるようになります。 MMS とは? MMS は、大規模の推論のための深層学習モデルの展開を簡素化するオープンソースライブラリです。MMS は、次の機能を備えています。 モデルアーティファクトを単一のモデルアーカイブにパッケージ化するためのツール。アーカーブはモデルを提供するために必要なすべてのアーティファクトをカプセル化します。 モデルアーカイブにパッケージ化されたカスタムコードを使用して、推論の実行パイプラインの各段階をカスタマイズする機能。 REST API エンドポイントと推論エンジンを含む、事前構成されたサービススタック。 スケーラブルなモデルの提供のために、MMS、MXNet、および nginx を含む Docker イメージ。 MMS およびエンドポイントを監視するためのリアルタイム運営メトリックス。 事前構成された Docker イメージである PyPI (Python Package Index) パッケージから、または Model Server GitHub リポジトリから直接、MMS をインストールできます。 ONNX モデルサービスの開始 ONNX は、複数の深層学習フレームワークの間の相互運用性を可能にします。MMS バージョン 0.2 […]

Read More

ClearView Social によるソーシャルシェアリングの影響を測定するための Amazon Comprehend の使用

ClearView Social は、企業の従業員が 1 クリックするだけで LinkedIn、Twitter、およびその他ソーシャルネットワークに承認済みコンテンツをシェアできるようにします。ClearView Social はその後、ピーク時にコンテンツをこれらのソーシャルネットワークにブロードキャストして、その結果として生じるエンゲージメントをリーダーボードと分析ダッシュボードで追跡します。 ClearView Social の最高技術責任者である Bill Boulden 氏によると、ClearView Social プラットフォームの主な差別化要因は、顧客がソーシャルシェアリングからの投資利益率 (ROI) を計算して追跡することを可能にする点です。ClearView Social を使用する企業は、アーンドメディア価値に基づくと、20 倍もの ROI 向上を実現しています。 これまで、ソーシャルエンゲージメントの価値を測定することは困難でした。ソーシャルシェアの価値を計算する方程式は、ユーザーがコンテンツを手動で堅実かつ正確にタグ付けすることに依存していました。しかし、コンテンツはいつも正確にタグ付けされるわけではなく、全くタグ付けされないこともありました。 手動でのタグ付けに対する依存を排除するため、ClearView Social は、テキスト内におけるインサイトと関連性の検出に機械学習を使用する自然言語処理 (NLP) サービスである Amazon Comprehend に頼りました。Amazon Comprehend のエンティティ検知機能は、人、場所、ロケーションなどの名前付きのエンティティのリストを返します。 Boulden 氏は、「当社では、記事を読んでトピックを抽出するために Amazon Comprehend を使用しており、これらは機械学習を使って自動的にタグ付けされます。この自動タグ付けは、顧客が Google AdWords API からの現行の入札価格に照らしてエンゲージメントの市場価格を簡単に見積るために役立ちます」と説明しています。 仕組み: ClearView Social と Amazon Comprehend AWS AI ブログからの記事、AWS DeepLens の拡張機能: 独自のプロジェクトの構築を例に取ってみましょう。まず、記事からの非構造化データを […]

Read More

Zocdoc は AWS で TensorFlow を使用し患者の信頼を築きます

ヘルスケア産業は複雑です。近年の調査では、半数以上のアメリカ人は、保険の取扱い範囲を理解するのが困難だと感じており、4 分の 3 のアメリカ人は医者が保険ネットワーク内にいるかどうかをもっと容易に確認する方法を望んでいます。 Zocdoc は、患者がこの迷路の中で行く方向を明らかにしていき、医療を受ける必要のある人に、より多くの情報に基づいた選択肢を与え、ニーズに合わせたケアを見つけることができるようにする上で役立ちます。AWS の深層学習は、Zocdoc の使命の核心部分にあり、患者を支援するために医療データを最適化するものです。TensorFlow の深層学習フレームワークを使用して構築されたアルゴリズムにより、Zocdoc は患者と医師をより効率的に照合します。全国平均では、新しい患者の待ち時間が平均 24 日であるのに対し、患者は 24 時間以内に予約を取ることができます。 「当社は、ヘルスケア分野で消費者に対応する企業として、患者のエクスペリエンスを改善するために、データ指向のイノベーションをもたらそうという熱意をもっています。当社の検索プロセスでは、複数のアルゴリズムを使用して患者の意図を解析し、患者のニーズを適切な専門家と照合させています」と Zocdoc の CTO Serkan Kutan は述べています。 深層学習による検索エクスペリエンス Zocdoc の Insurance Checker では、患者は健康保険カードの写真を撮ることのみが必要です。このシステムは、深層学習をベースにしたコンピュータービジョンを使用して ID カードをスキャンし、正しいポリシー ID 情報を抽出します。Zocdoc のエンジニアリングチームとデータサイエンスチームは、さまざまな種類の ID カードを解読するのが困難であるという課題に直面しましたが、AWS のクラウドベースの GPU サーバーを使用して、わずか 1 日でニューラルネットワークの PoC(実証支援)を作成することができました。 Insurance Checker は、会員 ID 情報を抽出した後、患者の健康保険付保範囲をリアルタイムで確認し、ネットワーク内の保険給付と、予測される自己負担金を確認します。 患者が自分の健康保険付保範囲を理解している場合でも、何週間も予約待ちをしている患者と、より速く予約が取れる意思の間でのミスマッチが起こることがよくあります。Zocdoc は、患者を適切でネットワーク内の予約可能な医師と照合する、機械学習をベースにしたデジタルのヘルスマーケットプレイスを提供します。 Zocdoc のデータサイエンスダイレクター、Brian D’Alessandro は次のように述べています。「当社では、深層学習を利用して、保険カードの画像を保険会社とプランに分類し、主要テキストフィールドを抽出して読み込み、患者が付保範囲を把握し、最も適切な医者を見つける支援をしています。」 詳しい背景情報 Zocdoc は、その識別と照合システムのために TensorFlow […]

Read More

Amazon Comprehend を使用したカスタマーレビューからのセンチメントの検知

今日の社会では、パブリックコンテンツがこれまでにない重要性を持っています。カスタマーレビューからのデータは、それに関連するセンチメントの理解がビジネスに貴重な市場認識と早期かつ積極的に問題に取り組む能力を提供することから、消費関連の意思決定に対する洞察を得るためのツールとして使われています。 センチメント分析は、文書が肯定的、否定的、中立的、または混合的のどれであるかを計算によって判断するプロセスを使用します。Amazon Comprehend は、自然言語処理 (NLP) テキスト分析サービスで、キーフレーズ、挙げられた組織名、および言語と併せてセンチメントを検知し、ドキュメントコレクションからトピックモデリングを実行することを可能にするいくつかの API で構成されています。センチメントを検知するこのサービスの機能は、テキストの評価時にスコア付けのメカニズムと属性を使用する最先端のディープラーニングアルゴリズムを用いて行われます。Amazon Comprehend トレーニングデータセットは、世界で最も大規模な自然言語コレクションのひとつである Amazon.com からの製品説明と消費者レビューにあるデータを中心に構成されています。AWS は、言語の進化に遅れを取らないために新しいデータでの再訓練が継続的に行われる完全に訓練されたモデルを提供します。一般の機械学習では、大半のデータエンジニアと開発者に対して現在持っているものとは異なるスキルセットが求められます。Amazon Comprehend はこのギャップを取り除き、開発者がすでに持っているスキルを使って簡単に NLP を実行できるようにしました。 このブログ記事では、カスタマーセンチメントを検知するために、AWS のサービスを使って構築されたサーバーレスイベント駆動型アーキテクチャの一部として Amazon Comprehend を活用する方法を説明します。 ソリューションのアーキテクチャ概要 Amazon.com の製品レビューを取り上げて、一定のレビューのセンチメントを分類するために Amazon Comprehend を使ってみましょう。Amazon Echo、Amazon Echo Dot、および Amazon Echo Show のレビューを例として使用します。次に、ブランドを損なわないようにするために追加の架空サンプルデータをアップロードし、リコールされている欠陥、破損、または危険アイテムといったニュアンスを持つ否定的な製品センチメントの取得をシミュレートします。最後に、Amazon Athena を使用して否定的なレビューに対するインタラクティブなクエリを行い、レポートをエクスポートすることによって、ビジネスが即座に対策を講じられるようにします。 レビューのアップロード: ユーザーは、カスタマーレビューをテキスト形式でカスタマーレビューバケットにアップロードします。  カスタマーレビューセンチメント分析関数: セキュアなレビューのアップロードが、レビューを一時ファイルにダウンロードし、それに対するテキスト分析を実行するように Amazon Comprehend を呼び出してから、肯定的、否定的、中立的、または賛否混合的な信頼スコアと共に全体的なセンチメントを CSV ファイルに出力するレビューセンチメント分析関数をトリガーする Amazon S3 イベントとして使用されます。センチメントが出力された CSV ファイルは、同じカスタマーレビューバケットのセンチメントフォルダに保存されます。 インタラクティブな SQL クエリ: Amazon […]

Read More

チャットボットにウェブ UI をデプロイする

お客様は、Amazon Lex をお使いになり非常に優れたチャットボットを構築しました。Amazon Lex コンソールをご使用になりチャットボットをテストしました。これでチャットボットを皆様のウェブサイトにデプロイ出来るようになります。 お客様が独自のボットユーザーインターフェース (UI) を構築することは可能ですが、荷が重いと感じられるかもしれません。様々なデバイスとブラウザに対するサポート、承認、音声録音などを扱う必要があります。以前に既に実行されているはずだと考え、上手く再使用できるソリューションが見つかるかもしれません。 Amazon Lex チャットボット UI チャットボット UI と呼ばれる Amazon Lex ウェブ UI のサンプルは、 Amazon Lex チヤットボットにフル機能のウェブクライアントを提供する関連する重要部分にすでに対応しています。この機能を迅速に活用して時間を最小限に抑えることで、お使いになられているチャットボットを搭載したアプリケーションの価値を見出すことができます。 フルページのチヤットボット UIとして稼働させることができます。: あるいは、チャットボットウィジェットとしてサイトに組み込むこともできます。: チャットボット UI は、以下の機能をサポートしています。: フルスクリーンまたは組み込み可能なウィジェットモードを備えた、モバイルに対応する UI 音声とテキストを完全にサポートし、二者間をシームレスに切り替えることができる 自動消音検出、トランスクリプション、オーディオの録音および再生、Amazon Lex レスポンスの再生を中断する機能などの音声機能 テキストと音声の両方をサポートするレスポンスカード ホスティングサイトからチャットボット UI とプログラムを介して対話する機能 複数のデプロイメントのオプション デプロイメントと統合のオプション チャットボット UI のデプロイメントと統合には4つのオプションがあります。 AWS CloudFormation の使用 AWS Mobile Hub の使用 事前に構築されている配布ライブラリの使用 事前にパッケージ化された Vue コンポーネントの使用 […]

Read More

AWS Deep Learning AMI に TensorFlow 1.5 と新しい Model Serving 機能が追加されました

AWS Deep Learning AMI は、機械学習を迅速かつ簡単に開始する支援となります。AMI には、機械学習の実践者の多様なニーズに応えるさまざまなプレビルドのオプションが含まれています。ディープラーニングのフレームワークの最新バージョンをご希望の方には、Deep Learning AMI は、別々の Conda ベースの仮想環境にインストールされたプレビルドのピップバイナリを提供します。高度なフレームワーク機能をテストしたり、フレームワークのソースコードを調整したりするのをお求めの方のために、ソースコード付きの Deep Learning AMI では、ソースからフレームワークのカスタムインストールを提供します。これらはしばしば、ストックバイナリでは利用できない高度な最適化でビルドされます。 Volta GPU での TensorFlow によるより速いトレーニング ソースコード付き AMI には、TensorFlow 1.5.0-rc1 が付属します。このプレリリースバージョンの TensorFlow は、EC2 P3 インスタンスに電力を供給する V100 Volta GPU を利用する NVidia CUDA 9 および cuDNN 7 ドライバをサポートします。当社のテストでは、ResNet-50 ベンチマークを合成 ImageNet データで fp-16 モードで p3.8xlarge インスタンスでトレーニングすると、TensorFlow 1.4.1 でのトレーニングよりも 1.8 倍高速になりました。これはプレリリースバージョンであるため、本番環境で使用する前にテストしてください。 Ubuntu と Amazon Linux […]

Read More