Amazon Web Services ブログ

Category: Artificial Intelligence

自動スケーリングを使用して、Amazon SageMaker エンドポイントのロードテストおよび最適化を行う

機械学習 (ML) のトレーニング、最適化、およびデプロイを済ませたら、コンシューマーが簡単に起動でき、機械学習から予測が得られる形でホスティングすることが次のチャレンジとなります。多くのカスタマーは組織の内部や外部にコンシューマーを抱えており、予測のためのモデル (ML 推論) を利用したいと考えています。コンシューマーは、場合によっては ML スタックを理解しておらず、リアルタイムまたはバッチモードで予測してくれるシンプルな API を必要としているかもしれません。Amazon SageMaker を使用すると、Deploying a Model on Amazon SageMaker Hosting Services できるようになり、コンシューマーが HTTPS リクエストを使用して安全で簡単な API コールを起動できるエンドポイントを利用できるようになります。多くのカスタマーは、モデルが予想する適切なインプットでそのようなエンドポイントを起動する方法や、そのエンドポイントのスケーラビリティや高可用性に関心があります。 本ブログ記事では、Amazon SageMaker エンドポイントをウェブから起動する方法や、モデルをロードテストし、エンドポイントを供給するインスタンスのサイズおよび数量の正しい設定を見いだす方法を説明します。ユーザーは Amazon SageMaker の自動スケーリングで、モデルの伸縮性および可用性を確保できるとともに、モニタリングおよび対処の対象となる正しいメトリクスを選択することでコストを最適化できます。 モデルのためにエンドポイントを作成する 本ブログ記事では、分類および回帰のための教師付きのノンパラメトリック学習法である決定木を使用し、あらかじめビルドとトレーニングを済ませたモデルを使用しました。そのモデルは、UCI Machine Learning Repository の iris dataset を使用し、がく片および花弁の長さと幅に基づいてアイリスの品種を予測します。今回のイメージ分類モデルのためにモデルエンドポイントを作成しましたが、ユーザーにはご自分のエンドポイントを作成することを推奨します。ヘルプが必要な場合は、GitHub repository を参照してください。 多くの Jupyter ノートブックは scikit_bring-your_own ノートブックを先述の GitHub リポジトリに持っており、以下のパスにある SageMaker インスタンスで利用可能です。 /sample-notebooks/advanced_functionality/scikit_bring_your_own scikit_bring_your_own ノートブックを開き、エンドポイントを削除する最後のセルを除くすべてのセルを実行します。以下のイメージで示すとおり、モデルがデプロイされるノートブックセル内のインスタンスタイプ ml.m4.xlarge に注目してください。Amazon […]

Read More

Amazon SageMaker アルゴリズムのパイプ入力モードを使用する

本日は Amazon SageMaker の内蔵型アルゴリズムのためのパイプ入力モードについて紹介します。パイプ入力モードを使い、データセットが最初にダウンロードされるのではなく、トレーニングインスタンスに直接ストリーミングされます。これは、トレーニングジョブが直ぐに始まり、早く完了し、必要なディスク容量も少なくて済むという意味です。Amazon SageMakerのアルゴリズムは、高速で拡張性が高くなるように設計されています。このブログ記事では、パイプ入力モード、それがもたらす利点、トレーニングジョブにおいてそれをどのように活用できるかについて説明しています。 パイプ入力モードでは、データはディスク I/O なしで実行中にアルゴリズムコンテナに送られます。このアプローチは、長くかかるダウンロードの処理を短縮し、起動時間を大きく短縮します。それによって通常ならファイル入力モードより読込スループットも良くなります。これは、高度に最適化されたマルチスレッドバックグラウンドプロセスによって、データが Amazon S3 から取得されるからです。また、16 TB の Amazon Elastic Block Store (EBS) のボリュームサイズ制限よりもずっと大きいデータセットをトレーニングできます。 パイプモードによって以下のことが可能になります。 データがトレーニングインスタンスにダウンロードされるのではなく、ストリーミングされるため、起動時間がより短くなります。 より高性能なストリーミングエージェントによる I/O スループットの向上 実質的に無制限のデータ処理能力。 内蔵型 Amazon SageMaker アルゴリズムでファイル入力モードまたはパイプ入力モードを活用できます。大きなデータセットにはパイプモードが推奨されているとはいえ、メモリ内に収まる小さなファイルやアルゴリズムのエポック数が多い場合であっても、ファイルモードは有効です。現在、どちらのモードでもトレーニングジョブの小さい実験から、ペタバイト規模の分散型のトレーニングジョブに至るまでさまざまな使用範囲をカバーしています。 Amazon SageMakerのアルゴリズム 大半のファーストパーティのAmazon SageMakerアルゴリズムは、最適化された Protocol Buffers (プロトコルバッファー) のrecordIO フォーマットを使えば最適に動作します。このため、本リリースでは、protobuf の recordIO フォーマット用のパイプモードのみがサポートされています。以下に一覧するアルゴリズムは、Protocol Buffers (プロトコルバッファー) の recordIO にエンコードされたデータセットで使用した場合に、パイプ入力モードをサポートします。 主成分分析法 (PCA) K 平均法クラスタリング 因数分解法 潜在的ディリクレ配分法 (LDA) 線形の学習者 (分類と回帰) […]

Read More

Apache MXNet (Incubating) が Keras 2 のサポートを追加

Keras および Apache MXNet (Incubating) のオープンソースプロジェクトへの参画者のおかげで、Keras-MXNet 深層学習のバックエンドが現在利用可能です。Keras は Python で書かれた高水準なニューラルネットワーク API です。CNN および RNN のプロトタイピングを素早く簡単に作成することで知られています。 Keras の開発者は、現在、畳み込みニューラルネットワーク (CNN) のトレーニングおよび再帰型ニューラルネットワーク (RNN) の分散トレーニング向けのハイパフォーマンスな MXNet 深層学習エンジンを使用することができます。コードを数行更新すると、Keras の開発者は、MXNet のマルチ GPU の分散トレーニング機能を使用して、トレーニングスピードを速めることができます。MXNet モデルを保存できることは、このリリースのもう一つの注目すべき機能です。Keras での設計、Keras-MXNet によるトレーニング、本番環境のインターフェイスの実行が大規模な MXNet で可能です。 Keras 2 および MXNet の分散トレーニング この記事では、Keras-MXNet のインストール方法と CNN および RNN のトレーニング方法の説明をします。以前、他の深層学習エンジンで分散トレーニングを実施したことがある場合は、退屈で難しいかもしれません。それでは、Keras-MXNet について内容を見ていきましょう。 インストールは数ステップだけです。 AWS 深層学習 AMI のデプロイ Keras-MXNet のインストール Keras-MXNet の設定 1. AWS […]

Read More

Amazon SageMaker を使用して、より迅速に大規模な主成分分析法を実行できます

このブログ記事では、Amazon SageMaker、Spark ML、Scikit-Learn を使用した、高ディメンジョンセットでの PCA に関するパフォーマンス比較を実施します。SageMaker は一貫してより高速な計算性能を示しました。速度改善内容を確認するために、下図 (1) および (2) を参照してください。 主成分分析法 主成分分析 (PCA) とは、依然として、可能な限りより多くの情報を保持しながら、データセット内部のディメンジョナリティ (例: 機能の個数など) の低減を目的とした監督機能解除済み学習アルゴリズムです。PCA は、各列は、それ以降はお互いが独立性を有する状況となるような、1 組のデータ行列を 1 個の直交空間に線形変換するものであり、個別のカラムが対象データ内で 1 個の既知の割合を占めることができるものです。換言すれば、個別のコンポーネントが互いに無相関性のような、元の特徴の複合体である、コンポーネントと呼ばれる 1 つの新しいセットの機能を発現します。更に、これらは制限が付加されることで、第 1 コンポーネントが対象データ内で可能な限り巨大な可変率を占め、第 2 コンポーネントが第 2 番目に最大であり、そして以下も同様となることとなります。 より包括的な説明については、「https://docs.aws.amazon.com/sagemaker/latest/dg/how-pca-works.html」を参照してください。 PCA は、Exploratory Data Analysis (EDA) 用の 1 個のツールおよび 1 個の機械学習用アルゴリズム (ML) の両面でも強力です。EDA に関して、PCA はディメンジョナリティ低減および 1 件のデータ問題についての多重共線性 (マルチコ) 低減に最適です。ML 方法論の 1 つとして、異常検出 (例: […]

Read More

Amazon SageMaker で fast.ai ノートブックを実行する

fast.ai はすべての人にディープラーニング能力へのアクセスを可能にすることを目的とした組織です。彼らは fast.ai と呼ばれる人気のあるオープンソースディープラーニングフレームワークを開発しました。このテクノロジーはコンピュータビジョン、自然言語処理、構造化データ、協調フィルタリングなどドメイン内のわずか数行のコードでユーザーが最新のモデルを作成することができる使いやすいディープラーニングライブラリ PyTorch に基づいています。  彼らはまた、機械学習の経験がない開発者向けに、数週間で最先端のディープラーニングモデルをデプロイするためのライブラリの使い方を学べる非常に人気のあるオンラインコースも開講しています。 Amazon SageMaker の主な利点の 1 つは、人気のある Jupyter オープンソースノートブック形式で完全に管理された機械学習ノートブック環境を 1 クリックで提供できることです。このブログ記事では、お使いの fast.ai ベースのディープラーニングモデルをトレーニングするために、fast.ai ライブラリと Jupyter ノートブックサンプルを Amazon SageMaker でホストされたノートブックにデプロイする方法を説明します。 これは fast.ai オンラインコース経由で実行している場合、またはカスタムアプリケーションで独自の fast.ai ベースのディープラーニングモデルをビルドし、トレーニングする場合に便利です。これから、SageMaker ノートブックインスタンスでカスタム fast.ai 環境の設定と構成を自動化するために必要なすべてのステップを説明します。 ステップ 1: Amazon SageMaker ノートブックライフサイクル設定を作成する Amazon SageMaker は、追加ライブラリをノートブックインスタンスに手動でインストールする機能を備えています。しかし、ノートブックインスタンスの終了後は、これらの追加されたカスタマイズも削除されます。つまり、ノートブックインスタンスを再起動時に、手動でこれらを再度追加する必要があります。しかし、最近リリースされた Amazon SageMaker のライフサイクル設定機能では、これらのカスタマイズを自動化することで、インスタンスのライフサイクルのさまざまな段階に適用することが可能になりました。 この例では、ノートブックインスタンスが起動されるたびに、ライフサイクル設定機能を使用して fast.ai ライブラリと関連する Anaconda 環境をインストールすることで、再起動のたびに繰り返しインストールする必要がなくなりました。 Amazon SageMaker コンソール (https://console.aws.amazon.com/sagemaker/) を開きます。 左側のナビゲーションウィンドウから [Notebook]、次に [Lifecycle configurations] […]

Read More

Amazon SageMaker で量子系をシミュレートする

Amazon SageMaker は、開発者やデータサイエンティストがあらゆる規模の機械学習モデルを迅速かつ簡単に構築、訓練、およびデプロイすることを可能にする完全マネージド型サービスです。しかし、機械学習 (ML) のワークフローを能率化するだけでなく、Amazon SageMaker は科学技術向けコンピューティングタスクの大規模なスペクトルを実行したり、並列化したりするためのサーバーレスでパワフルな使いやすいコンピューティング環境も提供します。このノートブックでは、TensorFlow と Amazon SageMaker の「bring your own algorithm (BYOA)」 (独自のアルゴリズムを活用する) 機能を併用して、シンプルな量子系をシミュレートする方法についてご紹介します。 この演習を実行するにあたり、Amazon SageMaker にアクセスできる AWS アカウントと Python および TensorFlow に関する基礎知識が必要になります。 量子系の超放射: 簡単な説明 これから私たちがシミュレートする量子効果は超放射として知られています。 これは、ある一定の環境下で、独立した発光体 (個別の原子など) が自然に量子コヒーレンスを増加させ、1 つの実体として協調的に動作するという現象を示します。コヒーレンスが増大したことで、このグループが高輝度のバーストを単発で発します。このバーストは独立した粒子のグループから生じると予想される輝度の N 倍 (!) も強いものである、この場合の N とはグループの粒子の数を示します。興味深いことに、この影響は粒子との相互作用に基づくものではなく、むしろ、粒子の明視野との相互作用と対称的な性質によってのみ生じます。 以下の図では、発光プロファイルが独立型 (上のパネル) と超放射型 (下のパネル) の粒子集団で明確に異なっていることがわかります。超放射は空間的に方向を持った、短時間の高輝度パルスを生じさせます。これは従来の急激に崩壊する放出プロファイルとは異なります。 超放射は多くの様々な量子系で見られ、 提示されてきました。ここでは TensorFlow と Amazon SageMaker を使って、ダイヤモンド窒素-空孔中心の核スピン集団からの超放射をシミュレートする方法を見ていきましょう。 Amazon SageMaker における科学的コンピューティングの構造 Amazon […]

Read More

Apache MXNet で事前にトレーニングを受けたモデルを使用する

このブログ記事では、Apache MXNet で事前トレーニングを受けたモデルの使用方法について解説します。複数モデルを試してみようと思われた理由は? 最高の精度をもったモデルを選ばないのはなぜでしょう? この記事の後半で説明するように、同じデータセット上でこれらのモデルがトレーニングを受け最高の精度を得るために最適化されたとしても、個々のイメージではその動作にわずかながら違いが生じます。また、予測速度も変動する可能性があります。これは多くのアプリケーションにとって重大な要素です。事前にトレーニングされたモデルをいくつか試すことで、自分のビジネス課題を解決するのに最適なモデルを見つけることができます。 まず、Apache の MXNet モデルズーから、3 つのイメージ分類モデルをダウンロードしてみましょう。 VGG-16 (研究報告)、ImageNet Large Scale Visual Recognition Challenge (ImageNet 大規模ビジュアルリコグニッションチャレンジ) における 2014 年度の分類最優秀モデル。 Inception v3 (研究報告)、GoogleNet の発展、オブジェクト検査での 2014 年度最優秀モデル。 ResNet-152 (研究報告)、複数カテゴリにおける 2015 度最優秀モデル。 各モデルについて次に示す 2 種類のファイルをダウンロードする必要があります。 ニューラルネットワークの JSON 定義を含むシンボルファイル: レイヤー、接続、アクティベーション機能など。 全接続加重、バイアスの値を保存する加重ファイルで別名パラメーター。トレーニングフェーズ中にネットワークにより習得。 # MacOS users can easily install ‘wget’ with Homebrew: ‘brew install wget’ !wget http://data.dmlc.ml/models/imagenet/vgg/vgg16-symbol.json -O […]

Read More

Amazon SageMaker での機械学習で、Amazon Pinpoint キャンペーンを加速

成功した多くのビジネスの中心には、顧客に対する深い理解があります。以前のブログ記事では、AWS データレイク戦略の一環として Amazon Redshift Spectrum を使用することで、全方向の顧客イニシアティブを強化する方法を説明しました。 このブログ記事では、敏捷性、コスト効率、そして AWS が顧客分析の実践を通じてどのように革新を起こすのかを実証するテーマを続けたいと考えています。みなさんの多くは、AI がどのようにして顧客イニシアティブを強化できるかを探っているでしょう。そこで、Amazon SageMaker と Amazon Pinpoint を活用したソリューションを通じて、ターゲットとするキャンペーンを機械学習 (ML) によってどのように推進できるかを実証します。 小売りの例を見てみましょう。消費者として、私たちには購入習慣の直感があります。私たちは、良い経験をした製品を再購入する傾向があります。あるいは、逆に、不満足な経験の結果として代替製品に移る可能性があります。三部作の一部である本を購入した場合、そのシリーズの次の本を購入する可能性が高くなります。スマートフォンを購入すると、近い将来にアクセサリーを購入する可能性が高くなります。 顧客の購買行動を知る能力があればどうなるでしょうか?次の購入がどうなるかを比較的高い確率で知ることができたら、どうすればいいでしょうか?私たちがこの予測能力を持っていれば、対処できる多くのことがあります。たとえば、在庫管理の効率を改善したり、マーケティングキャンペーンのパフォーマンスを向上させることができます。 このブログ記事では、Amazon SageMaker を使用してカスタムの長・短期記憶リカレントニューラルネットワーク (LSTM RNN) モデルを構築、トレーニング、使用して購入行動を予測し、予測を活用して Amazon Pinpoint によるキャンペーンを配信する方法を紹介します。 RNN は、特殊なタイプのニューラルネットワークであり、ML のアルゴリズムです。RNN は、通常、シークエンスデータと共に使用します。一般的なアプリケーションとしては、音声のテキストへの変換、言語の翻訳、¥感情分析などの自然言語処理 (NLP) の問題があります。このケースでは、少し創造的になり、UCI 機械学習リポジトリからダウンロードした 現実のオンライン小売データセット[i] の顧客取引履歴に RNN モデルを適用します。 課題 ソリューションに入る前に、こうしたプロジェクトをコンセプトから本番運用に移行する際の課題を理解してみましょう。標準的な ML プロセスを考えてみましょう。 いくつかの重要な観察があります。 このプロセスには、データエンジニアリングプロジェクトに共通のデータパイプラインが含まれているため、大規模なビッグデータの課題に直面します。このブログで紹介しているデータセットは小規模ですが、Amazon.com などの大手小売業者の類似データセットはビッグデータの規模であり、さまざまなフォーマットのバッチやストリームから集められています。モデルのパフォーマンスが向上するため ML プロジェクトには大量のデータが適していますが、データを大規模に活用するには適切なプラットフォームが必要です。AWS データレイク戦略は、運用の複雑さを最小限に抑え、コスト効率を最大化する、将来を見越したソリューションを提供することができます。AI イニシアチブだけでなく、他のデータエンジニアリングプロジェクトでも、引き続き基盤が実を結ぶことになります。 多様な活動をサポートする必要があります。多様な活動は、チームメンバーの役割やスキルセットに最も適した豊富な種類のツールの必要性につながります。データ処理、発見、大規模な機能エンジニアリングなどの活動には、Spark のようなツールが適しています。AWS では、Amazon EMR が […]

Read More

Policybazaar.com が、Amazon Polly を採用して、効率とカスタマーエクスペリエンスを強化

これは、PolicyBazaar.com の最高技術責任者兼チーフプロダクトオフィサーである、Ashish Gupta 氏のゲストブログ記事です。彼ら自身の言葉によれば、「PolicyBazaar.com はインドで最大の保険マーケットプレイスであり、顧客は購入前に複数の保険商品を比較することができます。」 2008 年の創業以来、Policybazaar.com は、インドが保険を購入する方法を再定義した新しい FinTech エコシステムを開拓してきました。私たちの 10 年間の長い旅の間、課題は私たちの絶え間ない進化と進歩の内在的な部分でした。  私たちのビジネスが成長するための核心は、消費者の問題を迅速かつ効率的に解決することです。私たちには哲学があります — つぼみのうちに摘み取る!2017 年、事業規模が拡大しました。平均取引件数が、以前の月当たり 12 万件から月当たり 25 万件に増加したのです。これは、私たちが以前よりもより多くの消費者を管理し、以前よりも多くの消費者の問題を解決したことを意味しました。2017 年、約 1 億件の顧客からの電話問い合わせを管理しました。 明らかに、この成長に追いつくために革新する必要があります。従来のツールを使って顧客の期待に応えることは不可能です。 したがって、新しい最先端の技術革新を採用することが最重要です。TTS (text-to-speech) ソリューションである、Amazon Polly が、日常の課題を解決するのに最適なツールでした。Amazon Polly の採用により、顧客サービスを次のレベルに引き上げ、より大きな成果性と高い生産性を実現しました。現在、Amazon Polly は次の方法で使用しています。 音声ブロードキャスト 重大な音声アラート 受信通話 Amazon Polly は、多目的用途に適した事前定義の応答の共有から、「ドキュメントが保留中です」や「アップロードに問題がありました」などの顧客の問い合わせにシフトすることを可能にして、プロセスと効率に差をつけました。Amazon Polly では、システムがお客様を識別し、個人ベースで質問を解決する音声通話を生成します。 つまり、特定の問題に重点を置いて関連性のあるメッセージを送信できるようになったのです。一例があります。「住所の証明を提出していただきありがとうございます。ただし、お客様が提出された所得の証明は間違っています。3 ヶ月の銀行口座明細書、または 3 ヶ月分の給料明細を送っていただけますか?」Amazon Polly への移行により、シームレスなカスタマーエクスペリエンスが増加し、より実践的なコミュニケーションが促進されます。 Amazon Polly と社内 IVR 通話サービスである PBee Connect を統合して以来、特に対処の通話がある場合に、顧客関与の大幅な改善が見られました。 私たちの場合、4 […]

Read More

異常検出にビルトイン Amazon SageMaker Random Cut Forest アルゴリズムを使用する

本日、Amazon SageMaker 向けの最新ビルトインアルゴリズムとして、Random Cut Forest (RCF) のサポートを開始しました。RCF は監視を伴わない学習アルゴリズムで、データセット内の異常なデータポイントや外れ値を検出します。このブログ記事では異常検出に関する問題について紹介するとともに、Amazon SageMaker RCF アルゴリズムについて説明し、実世界のデータセットを使った Amazon SageMaker RCF の使用法を実演します。 異常検出は極めて重要です たとえば、いくつもの街の区画で長期間にわたり交通量のデータを収集してきたとします。交通量が急増した場合、その背後にあるのが何らかの事故なのか、一般的なラッシュアワーなのかを予測することはできますか?交通量の急増が 1 区画だけで起きているのか、複数の区画で起きているのかは重要ですか? また、1 つのクラスターにあるサーバー間にネットワークのストリームがあるとします。そのインフラストラクチャが目下 DDoS 攻撃を受けている最中なのか、またはネットワークアクティビティの増加が良好な状態であるかを自動的に見極めることはできますか? 異常とは、 よく系統立てられた、またはパターン化されたデータから逸脱する観測結果を意味します。たとえば、異常は時系列データ上の想定外の急増、周期性のある中断、または分類不能なデータポイントを示します。データセットにそうした異常なデータが含まれる場合、「通常」データはシンプルなモデルで記述されることから、機械学習タスクの複雑性を急激に増大させる可能性があります。 Amazon SageMaker Random Cut Forest アルゴリズム Amazon SageMaker Random Cut Forest (RCF) アルゴリズムはデータセット内の異常なデータポイントを検出するための監視を伴わないアルゴリズムです。特に、Amazon SageMaker の RCF アルゴリズムは 1 件の異常スコアと各データポイントを関連付けます。異常スコアの値が低ければ、データポイントが「通常」であることを意味し、スコアの値が高ければ異常があることを意味します。「低い」と「高い」の定義はアプリケーションによって異なりますが、慣例から平均スコアから 3 つの値が逸脱していた場合、異常と見なされます。 Amazon SageMaker の RCF アルゴリズムの処理ではまず、トレーニングデータからランダムなサンプルを取得することから始めます。トレーニングデータが 1 台のマシンに入りきらない可能性がある場合は、レザボアサンプリングと呼ばれる手法で、データストリームから効果的にサンプルを抽出します。その後、ランダムカットフォレストの各構成要素ツリーにサブサンプルが配分されます。各サブサンプルはそれぞれの葉が単独のデータを含む 1 つのバウンディングボックスを表すように分割されるまでランダムにバイナリツリーへと分割されていきます。入力データポイントへ割り当てられた異常スコアは、そのフォレストの平均的な深度に対し、逆比例します。詳細については、SageMaker […]

Read More