Điện toán mã hóa

Cho phép điện toán trên dữ liệu được bảo vệ bằng mật mã

Điện toán mật mã hóa tại AWS là gì?

Các công cụ và dịch vụ mật mã hóa của AWS sử dụng một loạt các công nghệ lưu trữ và mã hóa có thể giúp bạn bảo vệ dữ liệu đang được lưu trữ và đang ở trạng thái truyền. Thông thường, dữ liệu phải được giải mã trước khi có thể được dùng trong hoạt động điện toán. Điện toán mật mã hóa là công nghệ vận hành trực tiếp trên dữ liệu được bảo vệ bằng mật mã, từ đó dữ liệu nhạy cảm không bao giờ bị lộ.

Điện toán mật mã hóa bao hàm một loạt các công nghệ bảo vệ quyền riêng tư, bao gồm điện toán nhiều bên bảo mật, mã hóa đồng hình, học liên kết (federated learning) bảo vệ quyền riêng tư và mã hóa có thể tìm kiếm. AWS đang phát triển các công cụ và dịch vụ điện toán mật mã hóa để giúp bạn đáp ứng các mục tiêu về bảo mật và tuân thủ, đồng thời cho phép bạn tận dụng tính linh hoạt, khả năng điều chỉnh quy mô, hiệu suất và tính dễ sử dụng mà AWS mang lại. Ví dụ: bạn có thể thấy điện toán mã hóa đang hoạt động trong AWS Clean Rooms, hiện ở chế độ xem trước.

Điện toán mật mã hóa AWS

Công cụ nguồn mở

Điện toán mã hóa cho Clean Rooms (C3R)

Thư viện này cho phép bạn cộng tác với dữ liệu của bạn trong AWS Clean Rooms (hiện ở chế độ xem trước) bằng kỹ thuật cho phép nhiều bên cùng tính toán một hàm trên đầu vào của mình, đồng thời vẫn đảm bảo được tính bảo mật cho đầu vào đó. Nếu bạn sở hữu các chính sách xử lý dữ liệu yêu cầu mã hóa dữ liệu nhạy cảm, vậy bạn có thể mã hóa trước dữ liệu của mình bằng khóa mã hóa thông dụng cho từng phiên cộng tác để mã hóa dữ liệu đó ngay cả khi chạy truy vấn.

Suy luận XGBoost bảo vệ quyền riêng tư

Kho lưu trữ này chứa chế độ triển khai nguyên mẫu của XGBoost bảo vệ quyền riêng tư. Kho này áp dụng một số kế hoạch mã hóa bảo vệ thuộc tính để mã hóa mô hình XGBoost. Nhờ đó, mô hình bảo vệ quyền riêng tư có thể dự đoán một truy vấn được mã hóa.

Các liên kết C++ dành cho thư viện mã hóa đồng hình Lattigo

Thư viện này cung cấp các liên kết C++ một phần cho thư viện mã hóa đồng hình Lattigo phiên bản 2.1.1 được viết bằng ngôn ngữ lập trình Go. Trình bao bọc này không hướng đến việc cung cấp liên kết cho tất cả các API Lattigo công khai nhưng lại rất dễ thêm các liên kết mới và cả các PR.

Bộ công cụ của trình triển khai đồng hình

Bộ công cụ của trình triển khai đồng hình (HIT) cung cấp các công cụ giúp đơn giản hóa quá trình thiết kế chu trình đồng hình cho sơ đồ mã hóa đồng hình CKKS.

Điện toán mật mã hóa: Bảo vệ dữ liệu đang được sử dụng (23:16)

Buổi tọa đàm về công nghệ của AWS này mô tả các kỹ thuật đa dạng trong điện toán mật mã hóa và cách chúng tôi áp dụng công nghệ này trong AWS Clean Rooms.

Mật mã hóa từ tương lai: Nghiên cứu và đổi mới để bảo vệ dữ liệu (34:13)

Phiên này cung cấp thông tin tổng quan về các lĩnh vực nghiên cứu ứng dụng AWS, bao gồm các thuật toán mật mã hóa hậu lượng tử, điện toán bảo mật của nhiều bên, mã hóa đồng hình đang được sử dụng và phân phối khóa lượng tử.

Máy học bảo vệ quyền riêng tư (27:52)

Phiên này trình bày mô hình AWS dành cho máy học bảo vệ quyền riêng tư và mô tả hai nguyên mẫu mà AWS đã phát triển.

Nghiên cứu và thông tin chuyên sâu

Các nhà nghiên cứu của AWS thường xuyên đóng góp các bài viết để giúp phát triển lĩnh vực điện toán mật mã hóa.

Chu trình đồng hình không quá sâu để đào tạo mô hình hồi quy logistic
Nghiên cứu này mô tả một cách tiếp cận máy học bằng cách sử dụng mã hóa đồng hình; trình bày cách xây dựng một chu trình cho hồi quy logistic. Chu trình này có thể thực hiện gấp đôi số lần lặp lại đào tạo trong cùng một khoảng thời gian, tương tự như kết quả được xuất bản trước đó.

Tổng hợp bảo mật riêng cho máy khách để học liên kết bảo vệ quyền riêng tư
Trong dự án này, chúng tôi giới thiệu các giao thức mới để học liên kết bảo vệ quyền riêng tư liên quan đến một nhóm máy khách và máy chủ trên đám mây, trong đó máy chủ hoạt động điện toán trên dữ liệu được mã hóa để tổng hợp các mô hình được đào tạo cục bộ của máy khách thành một mô hình chung được mã hóa, chỉ có thể được giải mã bởi máy khách.

Xử lý truy vấn top-k trên cơ sở dữ liệu được mã hóa cùng khả năng bảo mật mạnh mẽ
Nghiên cứu này đề xuất cấu trúc xử lý truy vấn top-k bảo mật, hiệu quả và có thể chứng minh đầu tiên đạt bảo mật Tấn công truy vấn được chọn (Chosen Query Attack) thích ứng. Các nhà nghiên cứu của AWS đã phát triển cấu trúc dữ liệu được mã hóa gọi là EHL và mô tả một số giao thức con an toàn theo mô hình bảo mật riêng để hồi đáp các truy vấn top-k.

Suy luận XGBoost bảo vệ quyền riêng tư
Mục tiêu trung tâm của máy học bảo vệ quyền riêng tư là cho phép người dùng gửi các truy vấn được mã hóa đến dịch vụ máy học từ xa, nhận kết quả được mã hóa và giải mã cục bộ. Nghiên cứu này phác thảo thuật toán suy luận XGBoost bảo vệ quyền riêng tư đã được triển khai và đánh giá theo kinh nghiệm thực tế trên AWS SageMaker.

Trình trích xuất điện toán tương đối
Trong nghiên cứu này, các nhà nghiên cứu AWS đã điều tra xem liệu có thể xây dựng trình trích xuất tương đối hay không. Đầu tiên, họ cho thấy các bản nháp bảo mật tuân thủ các giới hạn trên của lý thuyết mã hóa, ngay cả khi yêu cầu bảo mật về lý thuyết thông tin được nới lỏng. Sau đó, họ trình bày một kết quả tích cực rằng có thể tránh được kết quả tiêu cực khi xây dựng và phân tích trực tiếp trình trích xuất điện toán tương đối bằng cách sửa cấu trúc bù mã để dùng mã tuyến tính ngẫu nhiên.

Bạn muốn tìm hiểu thêm về điện toán mật mã hóa cùng với AWS?