Artificial Intelligence
Category: Amazon Q
Build an AI assistant using Amazon Q Business with Amazon S3 clickable URLs
In this post, we demonstrate how to build an AI assistant using Amazon Q Business that responds to user requests based on your enterprise documents stored in an S3 bucket, and how the users can use the reference URLs in the AI assistant responses to view or download the referred documents, and verify the AI responses to practice responsible AI.
Discover insights from Microsoft Exchange with the Microsoft Exchange connector for Amazon Q Business
Amazon Q Business is a fully managed, generative AI-powered assistant that helps enterprises unlock the value of their data and knowledge. With Amazon Q Business, you can quickly find answers to questions, generate summaries and content, and complete tasks by using the information and expertise stored across your company’s various data sources and enterprise systems. […]
Building AIOps with Amazon Q Developer CLI and MCP Server
In this post, we discuss how to implement a low-code no-code AIOps solution that helps organizations monitor, identify, and troubleshoot operational events while maintaining their security posture. We show how these technologies work together to automate repetitive tasks, streamline incident response, and enhance operational efficiency across your organization.
Containerize legacy Spring Boot application using Amazon Q Developer CLI and MCP server
In this post, you’ll learn how you can use Amazon Q Developer command line interface (CLI) with Model Context Protocol (MCP) servers integration to modernize a legacy Java Spring Boot application running on premises and then migrate it to Amazon Web Services (AWS) by deploying it on Amazon Elastic Kubernetes Service (Amazon EKS).
AI agents unifying structured and unstructured data: Transforming support analytics and beyond with Amazon Q Plugins
Learn how to enhance Amazon Q with custom plugins to combine semantic search capabilities with precise analytics for AWS Support data. This solution enables more accurate answers to analytical questions by integrating structured data querying with RAG architecture, allowing teams to transform raw support cases and health events into actionable insights. Discover how this enhanced architecture delivers exact numerical analysis while maintaining natural language interactions for improved operational decision-making.
Build modern serverless solutions following best practices using Amazon Q Developer CLI and MCP
This post explores how the AWS Serverless MCP server accelerates development throughout the serverless lifecycle, from making architectural decisions with tools like get_iac_guidance and get_lambda_guidance, to streamlining development with get_serverless_templates, sam_init, to deployment with SAM integration, webapp_deployment_help, and configure_domain. We show how this conversational AI approach transforms the entire process, from architecture design through operations, dramatically accelerating AWS serverless projects while adhering to architectural principles.
Enhance generative AI solutions using Amazon Q index with Model Context Protocol – Part 1
In this post, we explore best practices and integration patterns for combining Amazon Q index and MCP, enabling enterprises to build secure, scalable, and actionable AI search-and-retrieval architectures.
Streamline deep learning environments with Amazon Q Developer and MCP
In this post, we explore how to use Amazon Q Developer and Model Context Protocol (MCP) servers to streamline DLC workflows to automate creation, execution, and customization of DLC containers.
Enabling customers to deliver production-ready AI agents at scale
Today, I’m excited to share how we’re bringing this vision to life with new capabilities that address the fundamental aspects of building and deploying agents at scale. These innovations will help you move beyond experiments to production-ready agent systems that can be trusted with your most critical business processes.
Unlock retail intelligence by transforming data into actionable insights using generative AI with Amazon Q Business
Amazon Q Business for Retail Intelligence is an AI-powered assistant designed to help retail businesses streamline operations, improve customer service, and enhance decision-making processes. This solution is specifically engineered to be scalable and adaptable to businesses of various sizes, helping them compete more effectively. In this post, we show how you can use Amazon Q Business for Retail Intelligence to transform your data into actionable insights.









