AWS DevOps & Developer Productivity Blog

Deploy serverless applications in a multicloud environment using Amazon CodeCatalyst

Amazon CodeCatalyst is an integrated service for software development teams adopting continuous integration and deployment practices into their software development process. CodeCatalyst puts the tools you need all in one place. You can plan work, collaborate on code, and build, test, and deploy applications by leveraging CodeCatalyst Workflows.

Introduction

In the first post of the blog series, we showed you how organizations can deploy workloads to instances, and virtual machines (VMs), across hybrid and multicloud environment. The second post of the series covered deploying containerized application in a multicloud environment. Finally, in this post, we explore how organizations can deploy modern, cloud-native, serverless application across multiple cloud platforms. Figure 1 shows the solution which we walk through in the post.

Figure 1 – Architecture diagram

The post walks through how to develop, deploy and test a HTTP RESTful API to Azure Functions using Amazon CodeCatalyst. The solution covers the following steps:

  • Set up CodeCatalyst development environment and develop your application using the Serverless Framework.
  • Build a CodeCatalyst workflow to test and then deploy to Azure Functions using GitHub Actions in Amazon CodeCatalyst.

An Amazon CodeCatalyst workflow is an automated procedure that describes how to build, test, and deploy your code as part of a continuous integration and continuous delivery (CI/CD) system. You can use GitHub Actions alongside native CodeCatalyst actions in a CodeCatalyst workflow.

Pre-requisites

Walkthrough

In this post, we will create a hello world RESTful API using the Serverless Framework. As we progress through the solution, we will focus on building a CodeCatalyst workflow that deploys and tests the functionality of the application. At the end of the post, the workflow will look similar to the one shown in Figure 2.

 CodeCatalyst CI/CD workflow

Figure 2 – CodeCatalyst CI/CD workflow

Environment Setup

Before we start developing the application, we need to setup a CodeCatalyst project and then link a code repository to the project. The code repository can be CodeCatalyst Repo or GitHub. In this scenario, we’ve used GitHub repository. By the time we develop the solution, the repository should look as shown below.

Files in solution's GitHub repository

Figure 3 – Files in GitHub repository

In Amazon CodeCatalyst, there’s an option to create Dev Environments, which can used to work on the code stored in the source repositories of a project. In the post, we create a Dev Environment, and associate it with the source repository created above and work off it. But you may choose not to use a Dev Environment, and can run the following commands, and commit to the repository. The /projects directory of a Dev Environment stores the files that are pulled from the source repository. In the dev environment, install the Serverless Framework using this command:

npm install -g serverless

and then initialize a serverless project in the source repository folder:

├── README.md
├── host.json
├── package.json
├── serverless.yml
└── src
    └── handlers
        ├── goodbye.js
        └── hello.js

We can push the code to the CodeCatalyst project using git. Now, that we have the code in CodeCatalyst, we can turn our focus to building the workflow using the CodeCatalyst console.

CI/CD Setup in CodeCatalyst

Configure access to the Azure Environment

We’ll use the GitHub action for Serverless to create and manage Azure Function. For the action to be able to access the Azure environment, it requires credentials associated with a Service Principal passed to the action as environment variables.

Service Principals in Azure are identified by the CLIENT_ID, CLIENT_SECRET, SUBSCRIPTION_ID, and TENANT_ID properties. Storing these values in plaintext anywhere in your repository should be avoided because anyone with access to the repository which contains the secret can see them. Similarly, these values shouldn’t be used directly in any workflow definitions because they will be visible as files in your repository. With CodeCatalyst, we can protect these values by storing them as secrets within the project, and then reference the secret in the CI\CD workflow.

We can create a secret by choosing Secrets (1) under CI\CD and then selecting ‘Create Secret’ (2) as shown in Figure 4. Now, we can key in the secret name and value of each of the identifiers described above.

Figure 4 – CodeCatalyst Secrets

Building the workflow

To create a new workflow, select CI/CD from navigation on the left and then select Workflows (1). Then, select Create workflow (2), leave the default options, and select Create (3) as shown in Figure 5.

Create CodeCatalyst CI/CD workflow

Figure 5 – Create CI/CD workflow

If the workflow editor opens in YAML mode, select Visual to open the visual designer. Now, we can start adding actions to the workflow.

Configure the Deploy action

We’ll begin by adding a GitHub action for deploying to Azure. Select “+ Actions” to open the actions list and choose GitHub from the dropdown menu. Find the Build action and click “+” to add a new GitHub action to the workflow.

Next, configure the GitHub action from the configurations tab by adding the following snippet to the GitHub Actions YAML property:

- name: Deploy to Azure Functions
  uses: serverless/github-action@v3.2
  with:
    args: -c "serverless plugin install --name serverless-azure-functions && serverless deploy"
    entrypoint: /bin/sh
  env:
    AZURE_SUBSCRIPTION_ID: ${Secrets.SUBSCRIPTION_ID}
    AZURE_TENANT_ID: ${Secrets.TENANT_ID}
    AZURE_CLIENT_ID: ${Secrets.CLIENT_ID}
    AZURE_CLIENT_SECRET: ${Secrets.CLIENT_SECRET}

The above workflow configuration makes use of Serverless GitHub Action that wraps the Serverless Framework to run serverless commands. The action is configured to package and deploy the source code to Azure Functions using the serverless deploy command.

Please note how we were able to pass the secrets to GitHub action by referencing the secret identifiers in the above configuration.

Configure the Test action

Similar to the previous step, we add another GitHub action which will use the serverless framework’s serverless invoke command to test the API deployed on to Azure Functions.

- name: Test Function
  uses: serverless/github-action@v3.2
  with:
    args: |
      -c "serverless plugin install --name serverless-azure-functions && \
          serverless invoke -f hello -d '{\"name\": \"CodeCatalyst\"}' && \
          serverless invoke -f goodbye -d '{\"name\": \"CodeCatalyst\"}'"
    entrypoint: /bin/sh
  env:
    AZURE_SUBSCRIPTION_ID: ${Secrets.SUBSCRIPTION_ID}
    AZURE_TENANT_ID: ${Secrets.TENANT_ID}
    AZURE_CLIENT_ID: ${Secrets.CLIENT_ID}
    AZURE_CLIENT_SECRET: ${Secrets.CLIENT_SECRET}

The workflow is now ready and can be validated by choosing ‘Validate’ and then saved to the repository by choosing ‘Commit’. The workflow should automatically kick-off after commit and the application is automatically deployed to Azure Functions.

The functionality of the API can now be verified from the logs of the test action of the workflow as shown in Figure 6.

Test action in CodeCatalyst CI/CD workfl

Figure 6 – CI/CD workflow Test action

Cleanup

If you have been following along with this workflow, you should delete the resources you deployed so you do not continue to incur charges. First, delete the Azure Function App (usually prefixed ‘sls’) using the Azure console. Second, delete the project from CodeCatalyst by navigating to Project settings and choosing Delete project. There’s no cost associated with the CodeCatalyst project and you can continue using it.

Conclusion

In summary, this post highlighted how Amazon CodeCatalyst can help organizations deploy cloud-native, serverless workload into multi-cloud environment. The post also walked through the solution detailing the process of setting up Amazon CodeCatalyst to deploy a serverless application to Azure Functions by leveraging GitHub Actions. Though we showed an application deployment to Azure Functions, you can follow a similar process and leverage CodeCatalyst to deploy any type of application to almost any cloud platform. Learn more and get started with your Amazon CodeCatalyst journey!

We would love to hear your thoughts, and experiences, on deploying serverless applications to multiple cloud platforms. Reach out to us if you’ve any questions, or provide your feedback in the comments section.

About Authors

Picture of Deepak

Deepak Kovvuri

Deepak Kovvuri is a Senior Solutions Architect at supporting Enterprise Customers at AWS in the US East area. He has over 6 years of experience in helping customers architecting a DevOps strategy for their cloud workloads. Deepak specializes in CI/CD, Systems Administration, Infrastructure as Code and Container Services. He holds an Masters in Computer Engineering from University of Illinois at Chicago.

Picture of Amandeep

Amandeep Bajwa

Amandeep Bajwa is a Senior Solutions Architect at AWS supporting Financial Services enterprises. He helps organizations achieve their business outcomes by identifying the appropriate cloud transformation strategy based on industry trends, and organizational priorities. Some of the areas Amandeep consults on are cloud migration, cloud strategy (including hybrid & multicloud), digital transformation, data & analytics, and technology in general.

Picture of Brian

Brian Beach

Brian Beach has over 20 years of experience as a Developer and Architect. He is currently a Principal Solutions Architect at Amazon Web Services. He holds a Computer Engineering degree from NYU Poly and an MBA from Rutgers Business School. He is the author of “Pro PowerShell for Amazon Web Services” from Apress. He is a regular author and has spoken at numerous events. Brian lives in North Carolina with his wife and three kids.

Picture of Pawan

Pawan Shrivastava

Pawan Shrivastava is a Partner Solution Architect at AWS in the WWPS team. He focusses on working with partners to provide technical guidance on AWS, collaborate with them to understand their technical requirements, and designing solutions to meet their specific needs. Pawan is passionate about DevOps, automation and CI CD pipelines. He enjoys watching MMA, playing cricket and working out in the Gym.