AWS Machine Learning Blog
Category: Amazon SageMaker JumpStart
Transfer learning for TensorFlow text classification models in Amazon SageMaker
July 2023: You can also use the newly launched JumpStart APIs, an extension of the SageMaker Python SDK. These APIs allow you to programmatically deploy and fine-tune a vast selection of JumpStart-supported pre-trained models on your own datasets. Please refer to Amazon SageMaker JumpStart models and algorithms now available via API for more details on how […]
Detect fraudulent transactions using machine learning with Amazon SageMaker
Businesses can lose billions of dollars each year due to malicious users and fraudulent transactions. As more and more business operations move online, fraud and abuses in online systems are also on the rise. To combat online fraud, many businesses have been using rule-based fraud detection systems. However, traditional fraud detection systems rely on a […]
Use ADFS OIDC as the IdP for an Amazon SageMaker Ground Truth private workforce
To train a machine learning (ML) model, you need a large, high-quality, labeled dataset. Amazon SageMaker Ground Truth helps you build high-quality training datasets for your ML models. With Ground Truth, you can use workers from either Amazon Mechanical Turk, a vendor company of your choosing, or an internal, private workforce to enable you to […]
Amazon SageMaker JumpStart solutions now support custom IAM role settings
Amazon SageMaker JumpStart solutions are a feature within Amazon SageMaker Studio that allow a simple-click experience to set up your own machine learning (ML) workflows. When you launch a solution, various of AWS resources are set up in your account to demonstrate how the business problem can be solved using the pre-built architecture. The solutions […]
Deep demand forecasting with Amazon SageMaker
Every business needs the ability to predict the future accurately in order to make better decisions and give the company a competitive advantage. With historical data, businesses can understand trends, make predictions of what might happen and when, and incorporate that information into their future plans, from product demand to inventory planning and staffing. If […]
Visual inspection automation using Amazon SageMaker JumpStart
According to Gartner, hyperautomation is the number one trend in 2022 and will continue advancing in future. One of the main barriers to hyperautomation is in areas where we’re still struggling to reduce human involvement. Intelligent systems have a hard time matching human visual recognition abilities, despite great advancements in deep learning in computer vision. […]
Incremental training with Amazon SageMaker JumpStart
In December 2020, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). SageMaker JumpStart provides one-click fine-tuning and deployment of a wide variety of pre-trained models across popular ML tasks, as well as a selection of end-to-end solutions […]
Detect financial transaction fraud using a Graph Neural Network with Amazon SageMaker
Fraud plagues many online businesses and costs them billions of dollars each year. Financial fraud, counterfeit reviews, bot attacks, account takeovers, and spam are all examples of online fraud and malicious behaviors. Although many businesses take approaches to combat online fraud, these existing approaches can have severe limitations. First, many existing methods aren’t sophisticated or […]
Run text classification with Amazon SageMaker JumpStart using TensorFlow Hub and Hugging Face models
July 2023: You can also use the newly launched JumpStart APIs, an extension of the SageMaker Python SDK. These APIs allow you to programmatically deploy and fine-tune a vast selection of JumpStart-supported pre-trained models on your own datasets. Please refer to Amazon SageMaker JumpStart models and algorithms now available via API for more details on how […]
Run automatic model tuning with Amazon SageMaker JumpStart
In December 2020, AWS announced the general availability of Amazon SageMaker JumpStart, a capability of Amazon SageMaker that helps you quickly and easily get started with machine learning (ML). In March 2022, we also announced the support for APIs in JumpStart. JumpStart provides one-click fine-tuning and deployment of a wide variety of pre-trained models across […]